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1 Introduction
There is an increased interest in the monopsony power of firms on their labor and other
factor markets. Production functions are increasingly used to estimate ‘factor price mark-
downs’, which are a key object of interest when studying monopsony power.1 However,
little is known about the consistency of these estimators. To fill this gap, we conduct Monte
Carlo simulations in which we generate oligopsonistic labor market equilibria. Using these
simulated data, we apply production function-based estimators to recover factor price mark-
downs. Comparing these estimates to the true markdown distribution enables us to assess
how well these ‘cost-based’ estimators succeed at recovering true markdowns under a vari-
ety of data-generating processes.

We start the paper by discussing existing production approaches to markdown estimation,
which extend the markup estimation approach of Hall (1988) and De Loecker and Warzyn-
ski (2012) to allow for endogenous factor prices (Morlacco, 2017; Brooks, Kaboski, Li, &
Qian, 2021; Yeh, Hershbein, & Macaluso, 2022; Mertens, 2022; Rubens, 2023; Delabastita
& Rubens, in press; Mertens & Schoefer, 2024). These methods share a common identi-
fication strategy: they assume that at least one variable input has an exogenous price and
normalize the markup expressions derived from the first-order conditions of cost minimiza-
tion for all other inputs relative to this exogenous-price input.2 This enables the estimation
of markdowns for all other variable inputs.

We evaluate this class of markdown estimators using simulated data generated from a
discrete-choice labor supply model in the spirit of Berry (1994) and Card, Cardoso, Heinig,
and Kline (2018), in which we let firms compete oligopsonistically à la Nash-Bertrand.3 On
the labor demand side, we assume firms minimize costs under a Cobb-Douglas production
function with two variable inputs: labor and materials. Given the oligopsonistic structure of
the labor market, labor wages are endogenous to individual firms, meaning that the residual
labor supply curves are upward-sloping. In contrast, we assume that material prices are
taken as given by the individual firms. We run a Monte Carlo simulation in which we sample
250 firms that operate in 50 different markets during 10 years, and solve for labor market
equilibrium in each of these markets. This process is repeated for 200 random draws. We find

1For an excellent survey of the literature on markups and markdowns, see Syverson (2024).
2This identification approach was proposed in Appendix D of De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016).

3Unlike Card et al. (2018), which assumes monopsonistic competition, we allow for granular employers, as in
Berger, Herkenhoff, and Mongey (2022) and Azar, Berry, and Marinescu (2022).
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that under the Hicks-neutral data-generating process (DGP), the production-based markdown
estimator delivers consistent and precise estimates of wage markdowns and of the production
function coefficients.

Next, we argue that Hicks neutrality is the key assumption needed for markdown iden-
tification, as discussed in detail by Rubens, Wu, and Xu (2024). To test the robustness of
this assumption, we relax it by introducing random coefficients in the production function, al-
lowing for unobserved technological heterogeneity across firms—a realistic concern in many
applications. We then re-run our Monte Carlo simulation, keeping the labor supply side un-
changed but replacing the Hicks-neutral production function on the labor demand side. The
results show a stark contrast: unlike in the Hicks-neutral case, both the estimated production
function coefficients and wage markdowns exhibit significant bias. The root of this bias lies
in the inability to separately identify latent technological heterogeneity and wage markdowns
using the first-order conditions of cost minimization.

We test an alternative production function estimator, proposed by Rubens et al. (2024),
which extends the approach of Doraszelski and Jaumandreu (2018) to account for imperfect
competition in factor markets. We find that this estimator delivers consistent estimates of the
production function and of markdowns when there is unobserved heterogeneity in the pro-
duction function coefficients. We also simulate the performance of this estimator when the
true production function is Hicks-neutral, and find that the estimator of Rubens et al. (2024)
remains unbiased but is less efficient than the standard Hicks-neutral markdown estimator.
Despite this efficiency loss, it still estimates the true production function coefficients with
minimal bias.

We end the paper by discussing how some of the other commonly made assumptions
have been relaxed in the literature. Key extensions include allowing for non-substitutable
inputs in production, alternative labor market conduct beyond Nash-Bertrand competition,
differentiated goods and inputs, adjustment frictions, and scenarios where no factor prices
can reasonably be assumed to be competitive. These considerations highlight the broader
challenges in markdown estimation and reveal opportunities for refining existing methods in
more complex economic settings.

The remainder of this paper is structured as follows. In Section 2, we discuss cost-side
markdown estimators when the production function is Hicks-neutral. In Section 3, we intro-
duce technological heterogeneity in the production function, which relaxes the assumption
of Hicks-neutrality. Section 4 discusses further extensions, and Section 5 concludes.
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2 Markdown Estimation under Hicks Neutrality

2.1 Primitives

In this section, we test the canonical ‘production approach’ to markdown estimation, which
relies on Hicks-neutrality. The analysis begins by outlining the model’s core primitives: the
production function and the factor supply model.

Production Function

Let firms be indexed by f and time periods by t. We assume firms use two factors of pro-
duction: labor Lft and materials Mft, which are transformed into a scalar output level Qft

following a production function H(.). The residual Ωft captures Hicks-neutral productivity
variation, whereas the production function coefficients β are assumed to be common across
firms. This implies that the productivity residual is a scalar.

Qft = H(Lft,Mft, β)Ωft (1a)

We start by highlighting three assumptions. As a convention throughout the paper, we list the
assumptions that are used to estimate the production function and markdowns, while those
used solely for data simulation—without directly impacting estimation—are noted but not
formally stated.

assumption Production includes an unobserved scalar term, Ωft, which captures firm-
specific productivity shocks.

Assumption 1 imposes Hicks neutrality, as it rules out unobserved heterogeneity in the pro-
duction coefficients β. In Section 3, we relax this assumption and analyze its implications.

Assumption 1 The production function H(.) is assumed to be twice continuously differen-

tiable.

Assumption 1 rules out perfect complementarities between inputs, as seen in a Leontief
production function. We relax this assumption in Section 4.1.

Assumption 2 Both the good Qft and the inputs Lft and Mft are assumed to be homoge-

neous.

Assumption 2 treats both the output and inputs as undifferentiated. In Section ??, we explore
how this assumption can be relaxed.
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For the simulations, we impose a simple Cobb-Douglas production function, which in
logs yields Equation (2). However, any production function satisfying Assumptions 1 and
1 could be used. The output elasticities of labor and materials are denoted by βl and βm,
respectively.

qft = βllft + βmmft + ωft (2)

We impose an AR(1) transition process for Hicks-neutral productivity with serial corre-
lation ρ and i.i.d. productivity shocks eft. This assumption is useful because it allows esti-
mating the production function using a dynamic panel approach, but is not strictly necessary.

ωft = ρωft−1 + eft (2)

Assumption 3 Labor and materials are variable, static inputs.

Finally, we assume that both labor and materials are variable, static inputs, meaning they
adjust freely each period without frictions and fully depreciate by the end of each period.4

Labor Supply

We model labor supply using a discrete choice framework with oligopsonistic competition,
following Berry (1994) and Card et al. (2018), to simulate an environment where markdowns
vary across firms and wages are set strategically. Firms pay per-unit wages W l

ft to workers
i, who choose their employment between a set of firms, Ft, with f = 0 indicating the
outside option of being unemployed. Firms are assumed to pay uniform wages and cannot
discriminate among homogeneous workers. We assume that a worker’s utility from working
at firm f depends on the offered wage Wft, an unobserved amenity ξft, and an idiosyncratic
type-I extreme value error term υift, as specified in Equation (3).

Uift = γWft + ξft︸ ︷︷ ︸
≡δft

+υift (3)

We define mean utility as δft and, following standard practice, normalize the utility of
4Fixed inputs, such as capital, can be added to the model, but need to be solved using a dynamic investment
model, rather than the static cost minimization problem for the variable inputs.However, in this approach,
fixed inputs cannot be used to identify markdowns, as markdown estimation relies on normalizing first-order
conditions from the static cost minimization problem.
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the outside option to zero: Ui0t = 0. Applying the logit model, the labor market share,
sft =

Lft∑
g∈Ft

Lgt
, is given by:

sft =
exp(δft)∑
g∈Ft

exp(δgt)

Let L denote the total labor force. The labor supply function, H(.), is then given by:

Lft =
exp(γ ln(Wft) + ξft)∑
g∈Ft

exp(γ ln(Wft) + ξft)
L (4)

We define the inverse residual supply elasticities of labor and materials as ψlft − 1 and
ψmft − 1, respectively, so that:

ψlft ≡
∂W l

ft

∂Lft

Lft
W l
ft

+ 1 ψmft ≡
∂Wm

ft

∂Mft

Mft

Wm
ft

+ 1 (5)

Under the logit labor supply framework, the inverse residual labor supply elasticity faced by
firm f , (ψlft − 1), is given by:

ψlft − 1 =
1

γ(1− sft)
(6)

2.2 Behavioral Assumptions

Firms choose inputs each period to minimize current variable costs. Let λft denote marginal
cost, so that the cost minimization problem is given by Equation (7):

min
W l

ft,Mft

[
Wm
ftMft +W l

ftLft − λft
(
Qft −G(.)

)]
(7)

As demonstrated in De Loecker et al. (2016), the markup of the final goods price Pft over
marginal cost, defined as µpft ≡ (Pft − λft)/λft, is equal to Equation (8):

µpft =
βjft

αjftψ
j
ft

− 1 ∀j ∈ {l,m} (8)
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where αjft denotes the expenditure on input j as a share of gross revenues of firm f in year
t, such that αlft ≡ W l

ftLft/PftQft and αmft ≡ Wm
ftLft/PftQft. Following Morlacco (2017),

Brooks et al. (2021), and Yeh et al. (2022), the inverse supply elasticity of labor can be
expressed relative to that of materials by scaling the ratio of input expenditures with the
corresponding output elasticities of both inputs:

ψlft =
βl

βm
αmft
αlft

ψmft (9)

The wage markdown, which measures the gap between wages and the marginal revenue
product of labor (MRPLft), is defined as µwft ≡ (MRPLft −Wft)/MRPLft. This mark-
down can be expressed as a function of the inverse labor supply elasticity:

µwft =
ψlft − 1

ψlft
(10)

The less elastic the labor supply curve, the greater a firm’s ability to exert monopsony power
and depress wages.

Assumption 4 The residual supply of intermediate inputs is perfectly elastic: ψmft = 1.

Assumption 4 implies that intermediate input prices are exogenous to individual firms. As
shown in Equation (8), this assumption enables the point identification of the wage mark-
down, rather than merely its value relative to the material price markdown.

Solving the cost minimization problem in Equation (7) yields the labor demand function
for the Cobb-Douglas case, where factor prices are denoted as Wm

ft and W l
ft:

Lft =
[ βl

W l
ftψ

l
ft

(βmΩft

Wm
ft

) βm

1−βmΩft

] 1−βm

1−βl−βm (11)

The corresponding optimal demand for intermediate inputs is:

Mft =
(βmLβl

ftΩft

Wm
ft

) 1
1−βm

These expressions capture how input choices respond to factor prices and the firm’s produc-
tivity.
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2.3 Identification and Estimation

Given Assumption 3 (input variability) and the AR(1) process for productivity in Equation
(2), the production function can be estimated using a dynamic panel approach. Taking ρ-
differences, as in Blundell and Bond (2000), the productivity shock can be written as:

eft = qft − ρqft−1 − βl(lft − ρlft−1)− βm(mft − ρmft−1)

Similarly to Ackerberg, Caves, and Frazer (2015), assuming that labor and materials are both
variable inputs, we construct the following moment conditions for lags r = 1 to r = T − 1,
where T represents the panel length. As in Ackerberg et al. (2015), identification relies on
the assumption that variable inputs—materials and labor in our case—are chosen after the
firm observes the productivity shock eft.

E
[
eft(ρ, β

l, βm)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (12)

We estimate the production function coefficients (βl, βm) using these moment conditions
with two time lags. The resulting estimates, (β̂l, β̂m), are then used to compute the wage
markdown ψlft via Equation (9). This approach allows us to estimate the inverse residual
labor supply elasticity directly from the production function, without the need to estimate
the labor supply parameters γ and ξft.5

A dynamic panel approach to identify the production function, and the associated assump-
tion of the AR(1) productivity transition, is not strictly needed. One could instead identify
the production function using more widely used productivity inversion techniques, provided
that imperfect labor market competition is taken into account, as discussed in Ackerberg and
De Loecker (2021).

2.4 Monte Carlo Simulation

Parametrization

We simulate a dataset of 50 independent labor markets that each contain 5 firms, which are
observed during 10 years. Hence, the simulated dataset contains 250 firms that are observed
during 10 times each (N = 2500). We parametrize the true output elasticities of labor and

5While we specify the logit labor supply model to generate the simulated data, the labor supply curve itself does
not need to be estimated when applying Equation (9).
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materials at βl = 0.5 and βm = 0.3. We let intermediate input prices Wm
ft in the first year be

distributed as a normal distribution Wm
f1 ∼ N (5, 0.05) and let it evolve by firm-level shocks

that are N (0, 0.01) distributed. Similarly, we let the initial log productivity distribution
be normally distributed ωf1 ∼ N (1, 0.01) and let the productivity shocks be N (0, 0.01)

distributed. The serial correlation in productivity is set at ρ = 0.6, yielding a steady-state log
productivity distribution with a mean of 1/4 and a standard deviation of 1/3. The total labor
market size is normalized to one.

Solving for Equilibrium

We perform a Monte Carlo simulation with 200 independent draws. In each iteration, we
numerically solve for equilibrium wages and market shares by ensuring that, at every firm
in every year, labor demand (11) equals labor supply (4) and that labor markets clear in the
aggregate.

Using the simulated dataset, we estimate the production function parameters ρ, βl, and βm

based on the moment conditions in Equation (12). We then use these estimates in Equation
(9) to compute the inverse residual labor supply elasticities ψlft for all firms across all years.

Results

The distribution of the estimated parameters is shown by the solid blue lines in Panel (a)
of Figure 1. The results indicate that the Hicks-neutral production function estimator yields
consistent and precise estimates of the output elasticities of labor and materials. As reported
in Panel (a) of Table 1, the estimated output elasticities closely match their true values of
0.5 and 0.3, with remarkably low standard deviations across bootstrap iterations—0.003 for
labor and below 0.001 for materials. This confirms that the production function remains
identifiable even in the presence of imperfect labor market competition. Furthermore, the
estimator provides a reliable estimate of the wage markdown ψlft, which has a true value of
1.614 and is estimated at 1.615, with a standard deviation of just 0.009 across draws.

It is worth noting that the assumptions imposed on the labor supply model and on conduct
were only necessary to simulate the dataset, but were not used for production function esti-
mation: we estimated markdowns correctly using the production function while remaining
agnostic about the model of competition on the labor market, the functional form for labor
utility, and the distribution of wage markdowns.
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Figure 1: Monte-Carlo Simulations

(a) Hicks-neutral DGP: (b) Factor-Biased DGP:

Notes: Panel (a) shows the distribution of the production function estimates when assuming a Hicks-neutral
DGP. The solid blue lines report the estimates under the Hicks-neutral estimator, the dashed red lines report
the estimates using Rubens et al. (2024). Panel (b) visualizes these estimators for the Factor-Biased DGP, in
which there is latent heterogeneity about the output elasticities.
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3 Introducing Unobserved Technological Heterogeneity

3.1 Extended Model

We now revisit the identification strategy from Section 2, relaxing Assumption 1, which
imposed Hicks neutrality. This assumption underpins most production-function-based mark-
down estimators, including those in Morlacco (2017), Brooks et al. (2021), Yeh et al. (2022),
Mertens (2022), Rubens (2023), Delabastita and Rubens (in press), and Mertens and Schoe-
fer (2024). By lifting this restriction, we examine the implications for markdown estimation
and assess the robustness of existing approaches.

Instead of the Cobb-Douglas production function with constant output elasticities from
Equation (2), we introduce unobserved random coefficients βlft and βmft, as specified in
Equation (13). These random coefficients can arise due to various reasons, such as latent
heterogeneity in production technologies or differences in capital intensity.

qft = βlftlft + βmftmft + ωft (13)

s We let the output elasticities of labor and materials be distributed around the same values
βl and βm as before, with idiosyncratic error terms ϵlft and ϵmft:βlft = βl + ϵlft

βmft = βm + ϵmft

Equation (13) provides a straightforward way to introduce unobserved heterogeneity while
preserving the analytical tractability of the Cobb-Douglas production function. For a more
flexible approach, Rubens et al. (2024) estimate a Constant Elasticity of Substitution (CES)
production function under imperfect labor market competition and apply it empirically to the
Chinese nonferrous metals industry.

3.2 Identification Challenge

We reformulate the markdown estimator from Equation (9) to account for heterogeneous
output elasticities. As shown in Equation (14), identifying the wage markdown requires
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accurately estimating the random coefficients βmft and βlft.

ψlft =
βlft
βmft

αmft
αlft

ψmft (14)

While existing studies, such as Doraszelski and Jaumandreu (2018) and Demirer (2019),
have developed methods for estimating production functions with non-scalar unobservables,
these approaches assume perfect factor market competition, imposing ψlft = ψmft = 1. In
contrast, Rubens et al. (2024) introduce an estimator that accommodates both non-scalar
unobservables and imperfect factor market competition. Below, we outline this estimation
procedure within the framework of our simplified production model.

3.3 Estimation

Rubens et al. (2024) propose a joint estimation of the labor supply curve and the production
function. Building on the discrete choice labor supply model introduced earlier, the labor
supply equation to be estimated is:

sft − s0it = γ ln(Wft) + ξft (15)

Under the Nash-Bertrand conduct assumption, the markdown ψlft can be recovered as a
function of the estimated wage coefficient in labor supply, γ̂, and the observed labor market
share, sft:

ψ̂lft = 1 +
1

γ̂(1− sft)
(16)

From the first-order conditions, the output elasticity of labor can be expressed as a function
of the estimated wage markdown ψ̂lft, the observed revenue shares αlft and αmft, and the yet-
to-be-estimated materials coefficient βm.

β̂lft =
ψ̂lftα

l
ftβ

m

αmft
(17)

Substituting this expression for the output elasticity of labor into the production function
yields Equation (18), in which the term aft ≡

ψ̂l
ftα

l
ftlft

αm
ft

+mft is composed solely of observed
and estimated terms. Hence, the error term in the production function is again reduced to a
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scalar unobservable ωft.

qft = βm[
ψ̂lftα

l
ftlft

αmft
+mft︸ ︷︷ ︸

aft

] + ωft (18)

Applying the equation of motion for productivity, we isolate the productivity shock eft as:

eft = qft − ρqft−1 − βm(aft − ρaft−1)

The moment conditions for estimating the parameters (βm, ρ) are given by:

E
[
eft(ρ, β

m)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (19)

We again estimate the production function parameters taking up to two lags. Using the
estimated materials coefficient β̂m, the full distribution of the output elasticities of labor
βlft s can be recovered using Equation (17), which is now a function of data and estimated
parameters.

3.4 Monte Carlo Simulations

Parametrization and Estimation

To demonstrate the potential bias in the markdown estimates when the Hicks-neutral as-
sumption is imposed, while the DGP includes heterogeneity in output elasticity, we estimate
the production function twice. First, we “naively” estimate the production function assuming
the DGP is Hicks-neutral, using the moment conditions in Equation (12), and estimate the
markdown using the cost-side markdown estimator from Equation (9).

Second, we estimate the production function using the estimation procedure from Rubens
et al. (2024) that was outlined above. We start by estimating Equation (15). Given the latent
firm amenities ξft, we need to find an instrument for wages that is excluded from the error
term ξft. We assume that a labor demand shifter z is available, which we construct as a
variable that is correlated with productivity but uncorrelated to the amenity firm ξft. We
parametrize this labor demand shifter as the sum of TFP and an error term uft, which is
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normally distributed with a zero mean and standard deviation of 0.01.

zft =
ωft
2

+ uft

With the labor demand shifter in hand, we estimate the labor supply curve (15) using 2SLS.
Using the estimated parameter γ̂ and the observed labor market share sft, we compute the
wage markdowns based on Equation (16). We then substitute the markdown estimate ψlft
into Equation (18) and form the moment conditions in Equation (19) to estimate the produc-
tion function parameters βm and ρ. Finally, we recover the full distribution of the output
elasticities αlft and αmft using Equation (18).

Results under the Factor-Biased Data Generating Process

We visualize the production function estimates for the DGP with random coefficients in the
production function in panel (b) of Figure 1. The solid blue lines in Figure 1 report the
estimates using the Hicks-neutral production function estimator that assumes homogeneous
output elasticities. It is evident that the Hicks-neutral estimator performs poorly in estimating
the production function coefficients: the labor coefficient is estimated at 0.8, 60% higher
than the true value, while the materials coefficient is estimated at 0.23, 25% below the true
value. As a result, the Hicks-neutral model estimates the inverse labor supply elasticity at
3.559 on average—three times higher than the true average value of 1.613. This leads the
econometrician to conclude that wages are marked down by 72% relative to the marginal
revenue product of labor, whereas the actual markdown is only 38%.6

Figure 2 shows the source of the identification problem by plotting the estimated inverse
labor supply elasticity estimates against the true output elasticity of labor, βlft across obser-
vations in a single bootstrap iteration (the first of the 200 iterations), for both estimators. In
the Hicks-neutral model, the latent variation in labor output elasticity is misinterpreted as
variation in wage markdowns: firms with higher labor output elasticities are estimated to set
lower wage markdowns, as their labor cost share is above average. In contrast, our estima-
tor produces inverse labor supply elasticity estimates that remain independent of the output
elasticity of labor, aligning with the true structure of the underlying DGP.

The red dashed lines in panel (b) of Figure 1 show the estimates using the method from
Rubens et al. (2024) for the random coefficients DGP. The markdown is estimated with a
small negative bias, likely due to the small-sample properties of the instrumental variables

6The wage markdown is calculated as 1− 1/3.559, which is approximately 72%.
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Figure 2: Markdowns and the Output Elasticity of Labor

Notes: The blue diamonds report firm-level markdown estimates compared with these firms’ output elastici-
ties of labor in the first iteration of the Monte Carlo simulation, when using the Hicks-neutral estimator. The
red circles show the corresponding markdown estimates when using the estimator of Rubens et al. (2024).

estimator for labor supply, but it remains close to the true value of 1.613. As for the produc-
tion function coefficients, our estimator provides consistent estimates of the output elasticity.
This demonstrates that the production function can be accurately estimated even with ran-
dom coefficients and imperfect labor market competition, though it must be estimated jointly
with the labor supply curve.

Results under the Hicks-Neutral Data Generating Process

How does the estimator from Rubens et al. (2024) perform when there is no unobserved
heterogeneity in the output elasticities? Panel (a) of Table 1 shows that the output elasticity
of labor is still estimated reasonably close to the true value, at 0.516, which reflects a small
upward bias of 3.2%, while the materials elasticity is consistently estimated. The standard
errors of these estimates—0.072 for labor and 0.003 for materials—are notably higher than
those from the Hicks-neutral estimator, but remain relatively precise. The full distribution of
output elasticity and markdown estimates is shown by the red lines in Panel (a) of Figure 1.

Assuming Exogenous Input Prices

Finally, we re-estimate the production function under both DGPs using the method of Rubens
et al. (2024), but assume exogenous input prices. This effectively corresponds to the estima-
tor of Doraszelski and Jaumandreu (2018). We find that imposing exogenous input prices
when the true DGP is oligopsonistic and Hicks-neutral results in a serious bias in the mate-
rials coefficient, which is estimated at 0.492 whereas the true βm is 0.3, as can be seen in
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the middle columns of Panel (a) in Table 1. The estimates are very similar when the DGP is
factor-biased, as shown in Panel (b) of Table 1.

Table 1: Monte Carlo Simulations: Summary

(a) DGP 1: Hicks-neutral Hicks-neutral RWX(2024) RWX(2024)
estimator with exo. wage with endo. wage

Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.500 0.003 0.508 <0.001 0.515 0.072

sd(βl) true = 0 0.000 . 0.006 <0.001 0.002 0.002

βm true = 0.3 0.300 0.000 0.492 <0.001 0.299 0.003

ψl true = 1.614 1.615 0.009 0.000 . 1.669 0.252

corr(βl, ψl) . . . . 0.012 0.996
(b) DGP 2: Random coefficients Hicks-neutral RWX(2024) RWX(2024)

estimator with exo. wage with endo. wage
Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.805 0.048 0.503 0.001 0.512 0.042

sd(βl) true = 0.096 0.000 . 0.050 <0.001 0.098 0.008

βm true = 0.3 0.228 0.004 0.497 0.001 0.299 0.019

ψl true = 1.613 3.559 0.252 0.000 . 1.669 0.246

corr(βl, ψl) 0.000 . . . -0.111 0.033

Notes: This Table reports the results of the Monte-Carlo simulations, which are carried out with 200
iterations. Panel (a) reports the estimates when the true DGP is Hicks-neutral. The first two columns report
the Hicks-neutral estimator. The final four columns report the estimator of Rubens et al. (2024), both when
assuming exogenous wages (columns 3-4), and when allowing for endogenous wages (columns 5-6). Panel
(b) does the same but covers the case in which the true DGP is not Hicks-neutral, but features unobserved
random coefficients in production instead.

4 Further Extensions

4.1 Non-substitutable Inputs

Rubens (2023) relaxes Assumption 1 by allowing labor and materials to be perfect com-
plements, while still permitting labor to be substitutable with other inputs, such as capital
(K). The revised production function, shown in Equation (20), is used in Rubens (2023) to
study cigarette production in China. For inputs like tobacco leaves, and many other interme-
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diate goods, assuming perfect complementarity with labor is more realistic than assuming
substitutability.

Qft = min{βllftβkkft; βmmft}Ωft (20)

As demonstrated in Rubens (2023), which incorporates imperfect factor market competition
into the model of De Loecker and Scott (2022), the markup takes on a new form. This reflects
the fact that marginal costs are additive in both labor and materials:

µft = (
αlft
βl
ψlft + αmft)

−1 (21)

Unlike the models in Sections 2 and 3, the first-order conditions for labor and materials are
no longer linearly independent. Instead, there is a single first-order condition that incorpo-
rates both input prices and supply elasticities. This reduction in the number of first-order
conditions arises because firms no longer choose labor and materials separately; the choice
of one input determines the quantity of the other. This poses an identification challenge for
the input price markdowns, as the two first-order conditions can no longer be divided to
express the markdown in terms of output elasticities and revenue shares.

Of course, it is always possible that there is a third variable input, such as energy. If this
third input is substitutable with the one over which monopsony power is exerted (in this
case, labor), the markdown on the substitutable input can still be identified by solving for the
energy first-order condition and the markup expression (21). However, this approach doesn’t
apply when firms exert monopsony power over a non-substitutable input, such as materials
in Equation (20). In this scenario, the markup expression becomes:

µft = (
αlft
βl
ψlft + αmftψ

m
ft)

−1 (22)

Even if additional variable inputs that substitute for labor are introduced, leading to more
first-order conditions, it does not enable expressing the inverse intermediate input supply
elasticity ψmft as a function of output elasticities and data. This is because materials are
perfect complements to any of these additional variable inputs. In this case, one must either
estimate or impose a markup, or estimate the factor supply elasticity, as outlined in Rubens
(2023). This identification strategy has been applied in various industries, including Chinese
tobacco manufacturing in Rubens (2023), German car manufacturing in Hahn (2024), French
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dairy production in Avignon and Guigue (2022), and Chinese coal mining in Zheng (2024).

4.2 Labor Market Conduct

The labor market simulations in Sections 2 and 3 assume firms compete oligopsonistically
under Nash-Bertrand conduct. This framework encompasses monopsonistic competition as
a special case, where firms become atomistic and labor market shares approach zero. In this
subsection, we explore alternative forms of labor market competition beyond oligopsonistic
and monopsonistic models.

Collusion

One possibility is that firms collude in their input markets, coordinating wage or employment
decisions instead of making them independently. Delabastita and Rubens (in press) exam-
ines markdown estimation under the assumption of potential collusion. They demonstrate
that, even with firms colluding, the wage markdown can still be estimated using the produc-
tion approach, provided Hicks neutrality holds. Further, by combining labor supply model
estimation with production estimates, they identify labor market conduct and find that their
collusion estimates match the observed introduction of a cartel in the Belgian coal mining
industry.

Bargaining

In many labor market settings, firms and workers bargain over wages, rather than posting
wages (Caldwell, Haegele, & Heining, 2025). This bargaining can occur individually or
collectively through labor unions. Rubens (2024) explores cost-side markdown estimation
in the context of bargained wages, with an empirical application focused on Illinois coal
operators negotiating wages with miner unions. A key methodological challenge arises: to
identify the bargaining parameters, an estimate of the marginal revenue product of labor is
needed, which requires estimating the production function. However, the bargaining param-
eters themselves must be known to estimate the production function. To resolve this, Rubens
(2024) employs a fixed-point estimator, where production function estimation is embedded
in a loop that iteratively guesses the bargaining parameters. As explained in Rubens (2024),
this procedure converges quickly to a stable set of estimates for both bargaining power and
production function coefficients.
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4.3 Differentiation and Multi-Product Firms

Product and Input Differentiation

Assumption 2 assumes both goods and inputs are homogeneous, a strong assumption in
many contexts. While vertical product differentiation can be incorporated using a price con-
trol in the production function (De Loecker et al., 2016), most goods are also horizontally
differentiated. Hahn (2024) addresses this challenge by estimating a hedonic price model for
car manufacturers, which incorporates car characteristics alongside the production function.
This model is then used to estimate markdowns and analyze bargaining between car manu-
facturers and parts suppliers. A different challenge arises when inputs, rather than products,
are differentiated. Lamadon, Mogstad, and Setzler (2022) addresses this by accounting for
heterogeneous worker quality using matched employer-employee data.

Multi-Product Firms

Estimating production functions for multi-product firms is challenging, even with perfectly
competitive input markets, as inputs are typically not disaggregated at the product level in the
data. Several approaches have been proposed to address this issue (De Loecker et al., 2016;
Orr, 2022; Dhyne, Petrin, Smeets, & Warzynski, 2022; Valmari, 2023), all without assuming
imperfect factor market competition. In contrast, Avignon and Guigue (2022) develop a
model that incorporates both imperfect factor market competition and multi-product firms.
Their approach leverages engineering data to allocate input costs across different products.
They apply this model to estimate factor price markdowns and goods price markups in the
French dairy industry.

Assumption 4 assumes that both materials and labor are variable, static inputs. However,
in many real-world applications, a subset of these inputs may face adjustment frictions, such
as hiring or firing costs. While these frictions do not hinder production function estima-
tion—since timing assumptions can be easily adapted—they complicate markdown identifi-
cation using the production function approach. This is because the markup and markdown
expressions (8) and (10) are derived from solving a static cost minimization problem. Ad-
justment frictions introduce additional wedges between marginal revenue products and input
prices, which are unrelated to monopsony power. One way to separately identify adjustment
costs from monopsony distortions is to jointly estimate both a labor supply model and a pro-
duction model, as demonstrated by Chan, Mattana, Salgado, and Xu (2024) using Danish
data.
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4.4 No Competitive Input Market

Finally, Assumption 3 assumes that intermediate input prices are exogenous to firms. This is
a common assumption in the literature (Morlacco, 2017; Brooks et al., 2021; Yeh et al., 2022;
Delabastita & Rubens, in press), and it is essential for point-identifying the markdown when
only using the production function, as shown in Equation (10). If all input markets are im-
perfectly competitive, meaning no input price is exogenous, there are two possible solutions.
First, one could impose a model of imperfect competition and estimate a factor supply curve
for one of the inputs, as done in Section 3, allowing the markdown of the remaining inputs
to be identified using the production approach. Alternatively, Treuren (2022) suggests esti-
mating a revenue production function, in contrast to the quantity production functions used
in this paper, to identify wage markdowns without assuming competitive material markets.
While the advantage of allowing endogenous material prices is clear, using a revenue produc-
tion function comes with the tradeoff of imposing homogeneous demand elasticities across
firms, limiting the range of imperfect competition models that can be applied to the product
market. As with any assumption, the balance between imposing additional restrictions on
product market competition while relaxing those in input market competition depends on the
specific empirical application and industry context.

5 Conclusions
In this article, we review ‘production approaches’ for estimating factor price markdowns.
We discuss the commonly made assumptions in this class of estimators and test this class
of estimators using Monte Carlo simulations for oligopsonistic labor markets in which firms
compete in wages in a static Nash-Bertrand equilibrium. We find that when production is
Hicks-neutral, existing ‘cost-side’ markdown estimators recover markdowns consistently.
This implies that it is possible to estimate wage markdowns without having to specify and
estimate a labor supply model, and while remaining agnostic about the underlying model
of labor market conduct. However, we find that allowing for unobserved technological het-
erogeneity in production leads to severely biased estimates of factor price markdowns using
the production approaches that rely on Hicks neutrality. By implementing the estimation
procedure proposed by Rubens et al. (2024), which accommodates departures from Hicks
neutrality, we demonstrate that both production function coefficients and heterogeneity can
be consistently estimated in the presence of imperfect labor market competition. Finally,
we discuss approaches in the literature that have extended cost-side markdown estimation
to relax other assumptions, such as allowing for nonsubstitutable inputs, different types of
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labor market conduct, and multi-product production.
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