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Abstract

In this paper, we provide a theoretical characterization of the welfare effects of
buyer and seller power in vertical relations and introduce an empirical approach for
quantifying the contributions of each channel to deadweight loss. Our model accom-
modates both monopsony distortions from buyer power and double-marginalization
distortions from seller power. Rather than imposing a specific form of vertical con-
duct, we allow it to arise endogenously based on model primitives. We show that the
relative elasticity of upstream supply and downstream demand is the key determinant
of whether buyer or seller power creates distortions. Applying our framework to coal
procurement by power plants in Texas, we find that 83% of the distortion comes from
the monopoly power of coal mines, with the remainder attributed to the monopsony
power of power plants.
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1 Introduction

There is a growing interest in the buyer power of firms, both in labor markets (Card et al.,
2018; Berger et al., 2022; Lamadon et al., 2022; Yeh et al., 2022) and in vertically related
industries (Grennan, 2013; Gowrisankaran et al., 2015; Rubens, 2023). This attention is
mirrored in policy circles; for instance, the Department of Justice (DOJ) has recently chal-
lenged mergers on the grounds of oligopsony concerns (U.S. Department of Justice, 2022),
and tackling labor market power has come to the forefront of economic policy-making
(The White House, 2023; U.S. Department of Justice and Federal Trade Commission, 2023).

However, the welfare effects of buyer power depend on the specific vertical model one
relies on. In one class of models, which we classify as "monopolistic vertical conduct,"
downstream firms determine input demand given the outcome of input price bargaining
(Crawford and Yurukoglu, 2012; Ho and Lee, 2019). In these models, seller power creates
deadweight loss through double marginalization, and buyer power can countervail this
distortion. In another class of models, which we classify as "monopsonistic vertical con-
duct," the upstream party chooses how much input to supply given the outcome of the
bargaining process (Card et al., 2018; Berger et al., 2022). In these models, buyer power
induces deadweight loss by generating input-price markdowns.

In this paper, we provide a theoretical characterization of the welfare effects of buyer
and seller power in a unified framework and introduce an empirical approach for quan-
tifying the contributions of each channel to deadweight loss. Our framework nests both
monopsonistic and monopolistic vertical models. The key novelty is that we do not impose
a specific vertical conduct assumption but instead allow it to arise endogenously based on
model primitives. This feature allows us to characterize the conditions under which buyer
power and seller power act as countervailing or distortionary.

The starting point of our paper is our result that under increasing upstream marginal
cost and decreasing downstream demand, equilibrium exists under both monopsonistic
and monopolistic vertical conduct. This contrasts with most empirical IO models study-
ing settings with constant upstream marginal costs, where only monopolistic conduct is
possible. Similarly, monopsony models in labor typically feature perfectly elastic down-
stream demand, where only monopsonistic conduct is possible.1 However, in industries
characterized by increasing upstream cost and decreasing downstream demand, there is
no a priori reason why a specific vertical conduct should occur. To address this theoreti-

1Recently, monopsony models have been developed in which downstream residual demand is not perfectly
elastic, such as Kroft et al. (2020), Rubens (2023), Lobel (2024). We show that in these cases, equilibrium
conduct is not necessarily monopsonistic for all values of the bargaining parameter, although it is always
monopsonistic at the limit of full buyer power that is assumed in these papers.
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cal ambiguity, we develop two microfoundations that empirically identify which form of
vertical conduct emerges in equilibrium.

We argue that these settings are common and illustrate the application of our model
in three empirical contexts: (i) a manufacturer with increasing marginal costs bargaining
with a downstream firm, (ii) a union bargaining with an employer, and (iii) sellers collec-
tively bargaining with a buyer. In these settings, we show how to determine empirically
whether the distortion in a vertical relation comes from the buyer’s monopoly power or the
seller’s monopoly power. Moreover, if both distortion types are present in an industry, we
decompose the welfare losses into buyer and seller power components. We carry out this
decomposition in our main empirical application of coal procurement by power plants.

In its basic form, our theoretical model is a perfect-information bilateral Nash bargain-
ing problem between a single seller ("upstream party") and a single buyer ("downstream
party") that bargain over a linear wholesale price, and either the seller chooses how much to
supply ("monopsonistic bargaining") or the buyer chooses how much to produce ("monop-
olistic bargaining"). We refrain from making functional-form assumptions on the demand
and cost curves and allow for both simultaneous and sequential timing. We model "buyer
power" (𝛽) as the buyer’s bargaining ability compared to the seller.

Our first result shows that each type of vertical conduct has an opposite effect of buyer
power on downstream output. Under monopolistic bargaining, buyer power increases
output by reducing the double-marginalization problem of Spengler (1950). In contrast,
under monopsonistic bargaining, buyer power lowers output by leading to a different kind
of double marginalization, in which downstream marks down input prices in addition to
marking up consumer prices (Robinson, 1933). Although these insights are recognized in
the literature, we characterize the exact conditions under a nonparametric framework in a
bargaining setting.

To understand their properties, we compare the outcomes of monopsonistic and mo-
nopolistic bargaining with the efficient bargaining case, where upstream and downstream
bargain over a two-part tariff. We show that for an interior value 𝛽∗ ∈ (0, 1), both the
monopsonistic and monopolistic equilibrium coincide with the efficient-bargaining out-
come. Although not immediately obvious, this result is intuitive: at 𝛽∗, which we call the
‘efficient level of buyer power’, the buyer’s monopsony power and the seller’s monopoly
power exactly offset each other, leading to the efficient-bargaining outcome.

We show that 𝛽∗ is the key parameter determining the welfare effects of buyer and seller
power. It is characterized by the relative elasticities of upstream cost and downstream
demand, as these govern the extent of downstream monopsony power (cost curve) and
upstream monopoly power (demand curve). A higher cost elasticity increases the potential
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for monopsony power, requiring more seller power (lower 𝛽∗) to countervail it. Similarly,
less-elastic demand amplifies the scope for double marginalization, necessitating greater
buyer power (higher 𝛽∗) to countervail seller power.

We next develop two testable micro-foundations that endogenize vertical conduct and
select between monopsonistic and monopolistic equilibria. In our first selection mecha-
nism, we impose a participation constraint that the seller requires a nonnegative markup,
and the buyer requires a nonnegative markdown in order to trade. Under these constraints,
we show that the equilibrium quantity is unique, and the vertical conduct is either monop-
sonistic or monopolistic. The type of vertical conduct depends on how the buyer power
(𝛽) compares to the efficient level of buyer power (𝛽∗). If buyer power is below 𝛽∗, the
seller has too much power, resulting in monopolistic vertical conduct. Conversely, if buyer
power exceeds 𝛽∗, the buyer has too much power, leading to monopsonistic vertical con-
duct. Thus, buyer power can either be countervailing (increases output) or distortionary
(decreases output), depending on how 𝛽 compares with 𝛽∗.

Although the nonnegative markup and markdown constraints are intuitive, they war-
rant further discussion because even with a negative markup and markdown, firms can
still earn positive net profits from inframarginal units due to increasing marginal cost and
decreasing demand. Thus, these constraints are more likely to hold when it is infeasible
to operate the marginal unit at a loss through transfers between production units. For
example, if the seller is a labor union, a negative upstream markup would necessitate
transfers among union members to subsidize some workers to accept wages below their
reservation wage—a scenario that appears highly implausible. Similarly, if the seller is a
multiplant firm, it would require a manager to operate a loss-making plant.

To address cases in which the nonnegative markup and markdown assumption is
not necessarily warranted, we develop a second microfoundation to endogeneize vertical
conduct. We augment our model to allow firms to either bargain over just the wholesale
price or over both the output price and the wholesale price simultaneously (equivalent to a
two-part tariff). In this setting, we impose the participation constraint that firms are willing
to set linear contracts only if they cannot unilaterally earn higher profits under a two-part
tariff. We show that under this participation constraint, one of the firms always has an
incentive to choose a linear contract over a two-part tariff. In other words, observing linear
price contracts implies by revealed preferences that at least one firm opts not to engage in
efficient bargaining, indicating either monopsonistic or monopolistic behavior.

The characterization of vertical conduct as a function of the actual level of buyer power,
𝛽, and the efficient level of buyer power, 𝛽∗, suggests two empirical strategies for analyzing
buyer and seller power. First, 𝛽∗ can be calculated from the elasticity of upstream cost and
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downstream demand, and this value can be compared to the actual bargaining weight esti-
mated using a bargaining model. This comparison identifies the nature of the conduct and
determines whether seller or buyer power drives distortions. Second, even if estimating
the actual bargaining weight is not feasible, 𝛽∗ can still be readily estimated from cost and
demand data. High levels of 𝛽∗ suggest that the conduct is likely monopsonistic, while
low levels of 𝛽∗ indicate that the conduct is more likely monopolistic.

We show how to implement these empirical strategies in three applications. In our
main application, we analyze the wholesale coal procurement by power plants in Texas
from 2005 to 2015. Using detailed cost data from coal mines and coal-fired power plants,
along with observed wholesale coal and electricity prices, we estimate cost and demand
curves on both sides of the market and quantify the relative bargaining power of mines
and power plants. Our estimates reveal that 83% is due to monopoly power of coal mines;
the remaining 17% arises from the monopsony power of power plants.

The two other empirical examples rely on calibrated applications of our model to es-
timate 𝛽∗ rather than fully estimating a bargaining model. First, using estimates of labor
supply and demand for U.S. construction workers from Kroft et al. (2020), we examine
the effects of potential unionization of labor in this industry. We find that if construction
workers were to unionize, the output-maximizing bargaining power of employers would
be 0.42, slightly favoring unions over employers. Second, we apply our model to Chinese
tobacco farming and manufacturing to examine the potential effects of a farmer coopera-
tive. Using estimates from Rubens (2023), we find that the efficient level of buyer power
for cigarette manufacturers would be 0.92, which is close to a one-sided monopsony.

Our paper offers key insights for antitrust policy. In horizontal mergers between either
upstream or downstream firms, total and consumer surplus can rise or fall depending on
the efficient level of buyer power 𝛽∗, which governs whether vertical conduct is monop-
sonistic or monopolistic. Therefore, our model nests prior analyses of the role that buyer
power plays in merger control, with buyer power being pro-competitive in Nevo (2014);
Craig et al. (2021); Sheu and Taragin (2021) but anti-competitive in Hemphill and Rose
(2018); Berger et al. (2023). Second, in vertical mergers, potential welfare gains through re-
duced double marginalization depend on the gap between premerger bargaining weights
𝛽 and 𝛽∗, which we characterize and show how to estimate.

We provide four extensions of our theoretical framework. First, we analyze our com-
parative statics results with respect to disagreement payoffs instead of bargaining weights.
We show that most of our results remain robust when the buyer’s disagreement payoff is
treated as buyer power instead of 𝛽. Second, we generalize our model to settings where
multiple buyers compete oligopolistically in the downstream market. In this case, in-
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creased downstream competition makes vertical conduct more likely to be monopsonistic.
Third, we extend our framework to accommodate bilateral negotiations of multiple buyers
and sellers by using the extended class of Nash-in-Nash bargaining models with passive
beliefs. Fourth, we consider a multi-input downstream production setting, where one
input is obtained through bargaining and the other is sourced from a competitive market.

In concluding the introduction, we emphasize that our paper analyzes only the static
effects of buyer and seller power while remaining agnostic about potential dynamic effects,
such as those relating to innovation or investment incentives. These dynamic effects can
influence the net welfare effects of buyer and seller power. Moreover, we do not take a stand
on how to weigh the surpluses of upstream and downstream parties in our model; rather,
we examine the effects of buyer and seller power on equilibrium output and different
welfare metrics.

Contribution to the Literature Our project contributes to four sets of literature. The
first one is the literature on market power in vertical relations under bilateral oligopoly.
This class of models was implemented in IO to study firm-to-firm bargaining in (Crawford
and Yurukoglu, 2012; Grennan, 2013; Gowrisankaran et al., 2015; Crawford et al., 2018;
Ho and Lee, 2019), in labor to analyze union-employer wage bargaining (Abowd and
Lemieux, 1993; Hosken et al., 2023), and in international trade to study importer-exporter
bargaining (Alviarez et al., 2023; Atkin et al., 2024).2,

3 A common feature of these models
is that output is determined by the buyers, either directly or indirectly through output
prices, which implies that market power distortions are due to seller power.

Second, a distinct literature studies monopsony power in vertical relations while as-
suming that the seller, rather than the buyer, determines output. In these models, the
downstream party sets wholesale prices (or wages, in labor applications) while condition-
ing on an upward-sloping factor supply curve under either monopsonistic competition
(Card et al., 2018; Lamadon et al., 2022), oligopsonistic competition (Azar et al., 2022;
Berger et al., 2022; Rubens, 2023), or monopsonistic bargaining (Rubens, 2022).4

We contribute to these two literatures by endogenizing vertical conduct. Instead of
analyzing market power due to monopsony or upstream monopoly power, we consider a
unified framework that determines the vertical conduct in equilibrium and decomposes
the welfare effects of market power into distortions from seller and buyer power.

2An important difference between our paper and Alviarez et al. (2023) is that the "markdown" in our paper
is a wedge between the marginal revenue product of an input and the price of that input paid by the buyer,
whereas the markdown in Alviarez et al. (2023) means a negative markup of the seller.

3Empirical approaches in these literatures often rely on the "Nash-in-Nash" equilibrium notion proposed by
Horn and Wolinsky (1988) and micro-founded by Collard-Wexler et al. (2019).

4These are the "neoclassical" monopsony models, as opposed to the "dynamic" monopsony models in the
search-and-matching tradition (Manning, 2013).
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Third, we contribute to models of countervailing power (Galbraith, 1954; Iozzi and
Valletti, 2014; Loertscher and Marx, 2022), for which empirical evidence was documented
in Gowrisankaran et al. (2015); Barrette et al. (2022).5 We advance this literature by devel-
oping a model that identifies the conditions under which buyer power is countervailing
or distortionary. In complementary and independent research, Avignon et al. (2024) de-
rive similar theoretical results within a bargaining framework where the upstream firm
also exercises monopsony power, which introduces a novel "double markdownization"
phenomenon. Other differences include our consideration of both simultaneous and se-
quential timing assumptions, a different approach to endogenizing vertical conduct, and
bringing our model to the data.

Fourth, we contribute to the literature testing vertical conduct (Berto Villas-Boas, 2007;
Bonnet and Dubois, 2010; Atkin et al., 2024). Differently from these papers, vertical conduct
is an equilibrium outcome in our model instead of a primitive assumed to be fixed.

The rest of this paper is structured as follows. In Section 2, we present the setup of
our model. Section 3 compares the welfare effects of buyer power between monopolistic
and monopsonistic bargaining models while taking vertical conduct as given. Section 4
endogenizes vertical conduct. Section 5 generalizes the basic model with four extensions.
In Section 6, we empirically implement our model in two calibrated applications: labor
unions and farmer cooperatives. In Section 7, we carry out a fully estimated empirical ap-
plication in the context of coal procurement of power plants in Texas. Section 8 concludes.
All proofs are included in Appendices A, B, and C.

2 Model Setup

2.1 Primitives: Costs, Demand, and Payoffs

We consider a simple bilateral bargaining problem where an upstream firm 𝑈 sells a
quantity 𝑞 of a good to a downstream firm 𝐷 at a wholesale price 𝑤, using a linear price
contract. The downstream firm𝐷 then sells this good directly to consumers at no additional
cost. 𝐷 faces an inverse demand curve 𝑝(𝑞), with 𝑝′(𝑞) ≤ 0. 𝑈 produces output at a per-
unit cost 𝑐(𝑞), with 𝑐′(𝑞) ≥ 0. We denote the downstream profit as 𝜋𝑑(𝑤, 𝑞) ≡

(
𝑝(𝑞) − 𝑤

)
𝑞

and upstream profit as 𝜋𝑢(𝑤, 𝑞) ≡
(
𝑤 − 𝑐(𝑞)

)
𝑞. We assume that 𝑝(𝑞) > 𝑐(𝑞) in an interval

(0, 𝑞̄) with 𝑝(𝑞̄) = 𝑐(𝑞̄) to guarantee gains from trade. We denote upstream marginal cost
as 𝑚𝑐(𝑞) ≡ 𝜕(𝑐(𝑞)𝑞)

𝜕𝑞 and downstream marginal revenue as 𝑚𝑟(𝑞) ≡ 𝜕(𝑝(𝑞)𝑞)
𝜕𝑞 . For expositional

purposes, we set the disagreement payoffs of both buyers and sellers to zero, which we
later relax in Section 5.

5In contrast to models of countervailing power that rely on incomplete information bargaining, such as
Loertscher and Marx (2022), we model countervailing power in a complete information setup.

6



2.2 Relevance of Allowing for Increasing Marginal Costs

Our key departure from the prior empirical bargaining literature is that we allow for
increasing marginal costs of 𝑈 , in contrast to, for instance, Grennan (2013), Crawford et al.
(2018), and Ho and Lee (2019). Allowing for increasing marginal costs is important for
understanding vertical relationships across various industries. Below, we highlight three
vertical environments where increasing marginal costs matter and our model applies.

Example 1. Unions: Labor unions representing workers with heterogeneous reservation wages.

A long tradition of research has examined wage bargaining and labor unions (Ashen-
felter and Johnson, 1969; Card, 1986; Abowd and Lemieux, 1993; Lee and Mas, 2012). In
these applications, the upstream entity is a labor union bargaining over wages with a
downstream employer. The upstream marginal costs correspond to workers’ reservation
wages, i.e., their outside employment opportunities. Any heterogeneity in these reserva-
tion wages results in an upward-sloping labor supply curve faced by the employer. In
Section 6, we provide an example in the context of U.S. construction workers.

Example 2. Cooperatives: Cooperatives of suppliers with heterogeneous marginal costs.

When an upstream party collectively bargains on behalf of multiple suppliers with
a downstream buyer, heterogeneity in supplier costs creates an upward-sloping supply
curve. Agricultural cooperatives, which are prevalent in both the US and developing
countries, are an example of this structure (Cook, 1995; Banerjee et al., 2001; Ito et al.,
2012). In Section 6, we provide an example in the context of agricultural cooperatives in
Chinese tobacco markets.

Example 3. Firm-Level Increasing Marginal Costs: Individual suppliers with increasing
marginal costs at the firm level.

In Examples 1 and 2, the aggregation of individual atomistic production units generates
increasing marginal costs for the negotiator. There are also instances where an individual
input producer bargains with a downstream buyer and faces increasing marginal costs
due to decreasing returns-to-scale technology. Most production function estimates sup-
port decreasing returns to scale, particularly in the short term when capital is fixed (Olley
and Pakes, 1996; Collard-Wexler and De Loecker, 2015; De Loecker and Scott, 2022). More-
over, even firms with constant marginal costs at the plant level can experience increasing
marginal costs at the firm level when operating multiple plants with heterogeneous costs.6
In Section 6, we illustrate this category in the context of coal production.

6Also, any monopsony power of the upstream firm over its own input market leads to increasing marginal
costs.
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2.3 Behavior: Monopolistic vs. Monopsonistic Bargaining

We consider two behavioral models of vertical conduct. In the first type, which we coin
"monopolistic bargaining," 𝐷 makes an output decision 𝑞, and 𝑈 and 𝐷 bargain over the
wholesale price 𝑤 to maximize a Nash product7:


max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

[(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽]
s.t. 𝜋𝑑 ≥ 0,𝜋𝑢 ≥ 0 (1)

We denote the solution to this problem (𝑞𝑚𝑝 , 𝑤𝑚𝑝). A second type of vertical conduct,
which we coin "monopsonistic bargaining," involves 𝑈 choosing how much output to
supply while bargaining over the wholesale price with 𝐷:


max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

[(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽]
s.t. 𝜋𝑑 ≥ 0,𝜋𝑢 ≥ 0 (2)

We denote the solution to this problem as (𝑞𝑚𝑠 , 𝑤𝑚𝑠). In the remainder of the paper, we
refer to the bargaining weight of the buyer, 𝛽, as "buyer power" and 1− 𝛽 as "seller power."

Note that under monopsonistic bargaining, "𝑈 chooses output" should not be inter-
preted as contracts in which upstream firms directly control downstream output levels,
as in resale price maintenance contracts. Instead, upstream firms choose how much in-
put they are willing to supply to 𝐷, which in turn constrains how much output 𝐷 can
sell.8 The "𝑈 chooses output" model is relevant in the presence of increasing upstream
marginal costs: with constant marginal costs, the upstream firm would supply an infinite
amount of goods as long as the wholesale price exceeds marginal cost. In contrast, increas-
ing marginal costs create a well-defined profit-maximization problem with an interior
solution.

We discuss two versions of our model that differ in terms of the timing assumptions: a
simultaneous bargaining model and a sequential bargaining model.

Definition 1. Under "Simultaneous Bargaining," quantity choices by either 𝑈 or 𝐷 occur simul-
taneously while wholesale prices are being bargained over.

• Stage 0: 𝑈 and 𝐷 observe 𝑐(.), 𝑝(.), 𝛽.

7The model can be readily extended to settings where downstream firms choose a price (𝑝) instead of a quantity
(𝑞), a more common assumption in empirical bargaining models for industries with product differentiation.

8This assumption can be extended by letting upstream choose a quantity that is an input to downstream
production; we provide this extension in Section 5.4.
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• Stage 1: 𝑈 and 𝐷 bargain over 𝑤, and either 𝑈 or 𝐷 chooses 𝑞.

Definition 2. Under "Sequential Bargaining," 𝑈 and 𝐷 bargain over a wholesale price, after
which either 𝑈 or 𝐷 chooses an output quantity.

Given that firms are forward-looking, they internalize the relationship between whole-
sale prices and output, 𝑞(𝑤), when bargaining over 𝑤.

• Stage 0: 𝑈 and 𝐷 observe 𝑐(.), 𝑝(.), 𝛽.
• Stage 1: 𝑈 and 𝐷 bargain over 𝑤.
• Stage 2: Either 𝑈 or 𝐷 chooses 𝑞(𝑤).

Both types of timing assumptions are widely used in the literature.9 Simultaneous
models have been employed in several studies, including Ho and Lee (2017) and Crawford
et al. (2018). The sequential model resembles various vertical models in the literature,
such as the bargaining model in Crawford and Yurukoglu (2012) and the right-to-manage
models of union-labor bargaining (Leontief, 1946; Abowd and Lemieux, 1993).

Assuming that the second-order conditions hold, the first-order conditions of these
problems are given by

𝑝′(𝑞)𝑞 + 𝑝(𝑞) = 𝑤 (D-FOC) (3)

𝑐′(𝑞)𝑞 + 𝑐(𝑞) = 𝑤 (U-FOC) (4)

𝛽
𝜕𝜋𝑑

𝜕𝑤
𝜋𝑢 + (1 − 𝛽)𝜕𝜋

𝑢

𝜕𝑤
𝜋𝑑 = 0 (B-FOC) (5)

for 𝛽 ∈ (0, 1).10 The monopolistic bargaining model solution is characterized by (D-FOC)
and (B-FOC), and the monopsonistic bargaining model solution is characterized by (U-
FOC) and (B-FOC).11,

12

Our bargaining models, in the case of perfect buyer and seller power, nest several
classical models. With perfect buyer power (𝛽 = 1), the sequential model collapses to
the classical monopsony model of Robinson (1933), in which sellers decide how much
to supply at each possible wholesale price and buyers unilaterally set wholesale prices

9See Lee et al. (2021) for a comprehensive discussion of these timing assumptions and their implications.
10The second-order conditions specify that upstream and downstream profits are bounded under the monop-

sonistic and monopolistic conduct models, respectively. This implies that 𝑚𝑐′(𝑞) ≥ 0 and 𝑚𝑟′(𝑞) ≤ 0.
11Appendices A.1 and B.1 detail the closed-form solutions of these first-order conditions for the simultaneous

and sequential versions of the model, respectively
12The FOCs above only characterize the solutions to the monopolistic and monopsonistic bargaining models

for 𝛽 ∈ (0, 1). At the limiting cases for 𝛽 = 0 and 𝛽 = 1, these models must be solved as constrained
optimization problems, as the nonnegative profit constraints become binding. In Appendix D.1, we show
that this increases the range of bargaining parameters for which a solution exists to 𝛽 ∈ (0, 1] and 𝛽 ∈ [0, 1)
for the simultaneous monopoly and monopsony bargaining models, respectively.
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conditional on this factor supply curve. In contrast, monopolistic conduct with sequential
bargaining at perfect seller power, 𝛽 = 0, collapses to the successive monopoly model
of Spengler (1950) with complete double marginalization. The remaining limit cases
represent scenarios where one party makes a take-it-or-leave-it (TIOLI) offer.13

2.4 Benchmark: Efficient Bargaining

We consider the "efficient-bargaining" problem as a benchmark against the monopsonistic
and monopolistic bargaining models. Under efficient bargaining, upstream and down-
stream firms negotiate over both wholesale price and quantity:

max
𝑤,𝑞

[(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽] (6)

This corresponds to a scenario where the parties maximize their joint profit. The efficient-
bargaining quantity 𝑞∗ from this problem is simply the quantity such that upstream
marginal cost equals downstream marginal revenue: 𝑚𝑐(𝑞∗) = 𝑚𝑟(𝑞∗). We use this model
as a reference point for the monopsonistic and monopolistic bargaining models and as a
means to assess their deadweight loss relative to efficient bargaining.

2.5 Sources of Market Power in Vertical Relations

Since we do not take a stance on vertical conduct, two sources of market power in a vertical
relation can generate distortion in our model: a markup of the seller and a markdown of
the buyer. As usual, we define the markup as the wedge between the wholesale price 𝑤

and the marginal cost of the seller, and the "markdown" as the wedge between the marginal
revenue of the buyer and the wholesale price14:

‘Seller Markup’ : 𝜇𝑢(𝑞) ≡ 𝑤 − 𝑚𝑐(𝑞)
𝑚𝑐(𝑞) ‘Buyer Markdown’ : Δ𝑑(𝑞) ≡ 𝑚𝑟(𝑞) − 𝑤

𝑚𝑟(𝑞)

We also have buyer’s markup as an additional source of market power; however, it is
present regardless of the vertical conduct. Throughout the paper, we distinguish different
sources of market power in vertical relation by referring to the seller’s markup as "upstream
monopoly power," and the buyer’s markdown as "downstream monopsony power".15

13See Table OA-1 for a summary of the limit cases of both models.
14We write the markdown this way in contrast to the often-used formula (𝑤 − 𝑚𝑟(𝑞))/(𝑚𝑟(𝑞)) so that higher

markdowns imply more monopsony power, similarly to higher markups implying more monopoly power.
15The buyer’s markup is due to monopoly power of the buyer on the final goods market, and it appears in

both monopolistic and monopsonistic bargaining models.
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3 Welfare Effects of Buyer and Seller Power

In this section, we first analyze the existence of monopsonistic and monopolistic conduct
under different assumptions about cost and demand curves to determine in which empiri-
cal settings these conducts are possible. We then characterize the effects of buyer power on
output, consumer surplus, and total welfare separately under monopolistic and monop-
sonistic bargaining. In the next section, we unify both conducts and jointly examine their
welfare effects by introducing endogenous vertical conduct.

3.1 Equilibrium Existence

We show the existence of equilibrium in monopsonistic and monopolistic bargaining by
focusing on two special cases commonly used in the literature: constant marginal cost and
constant marginal revenue.

Proposition 1. Under both simultaneous and sequential timing assumptions
(i) If the upstream marginal cost is constant, 𝑚𝑐′(𝑞) = 0, the monopsonistic bargaining problem
does not have an interior solution.
(ii) If the downstream marginal revenue is constant, 𝑚𝑟′(𝑞) = 0, the monopolistic bargaining
problem does not have an interior solution.
(iii) In all other cases, both the monopolistic and monopsonistic bargaining problems have an interior
solution for 𝛽 ∈ (0, 1).16

The intuition for Proposition 1 is straightforward: if upstream marginal costs are
constant, the first-order condition (FOC) for𝑈’s output choice in the monopsonistic model
becomes undefined when the wholesale price exceeds the marginal cost; 𝑈 would be
willing to supply an infinite quantity of output. Similarly, in the monopolistic model, if
marginal revenue is constant, 𝐷 would be willing to sell an infinite quantity if the wholesale
price is below the downstream price, resulting in unbounded profits for 𝐷.

Given Proposition 1, we assume in the remainder of this section that 𝑚𝑐′(𝑞) > 0
when analyzing monopsonistic bargaining and 𝑚𝑟′(𝑞) < 0 when analyzing monopolistic
bargaining, as these models would otherwise not be well-defined.

3.2 Output and Buyer Power

We characterize the relationship between output 𝑞 and buyer power 𝛽 in monopsonistic
and monopolistic bargaining. To do so, we introduce two additional properties of the cost

16In the simultaneous bargaining models, a solution may fail to exist for some interior values of 𝛽 depending on
the demand and cost curves. We characterize the 𝛽 range for which a solution may exist for the simultaneous
models in Appendix D.2, but for simplicity, we use the 𝛽 ∈ (0, 1) for the remainder of the paper. If necessary,
one can replace these bounds with those derived in Appendix D.2.
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and demand curves.

Property 1. Increasing Difference Between Marginal and Average Costs: 𝑑(𝑚𝑐(𝑞)−𝑐(𝑞))
𝑑𝑞

> 0

Property 2. Decreasing Difference Between Marginal and Average Revenue: 𝑑(𝑚𝑟(𝑞)−𝑝(𝑞))
𝑑𝑞

< 0

These properties govern the curvature of the cost and demand curves. They are
weaker assumptions than the convexity of the average cost and the concavity of demand,
but they imply that upstream marginal costs are weakly increasing, 𝑚𝑐′(𝑞) ≥ 0, and that
downstream marginal revenue is weakly decreasing, 𝑚𝑟′(𝑞) ≤ 0.17 In addition, we assume
that 𝑝(𝑞) and 𝑐(𝑞) are thrice continuously differentiable functions.

Lemma 1. If Property 1 holds, in simultaneous monopsonistic bargaining, the equilibrium quantity
𝑞𝑚𝑠 is decreasing and the buyer markdown Δ𝑑 are increasing with 𝛽, that is 𝑑𝑞𝑚𝑠/𝑑𝛽 < 0 and
𝑑Δ𝑑/𝑑𝛽 > 0.

Lemma 1 establishes that output decreases with buyer power under monopsonistic
bargaining. Figure 1(a) provides the key intuition behind this result. In monopsonistic
bargaining, the output is decided by𝑈 , which implies that 𝑞(𝑤) is an input supply curve. An
increase in buyer power 𝛽 leads to movements along this input supply curve by lowering
the wholesale price. This, in turn, reduces output and increases the markdown.

The "Increasing Difference Between Marginal and Average Costs" assumption in Prop-
erty 1 is a necessary condition for Lemma 1 to hold globally. The intuition is that, in the
monopsonistic model, marginal cost determines the quantity decision, while average cost
governs the upstream firm’s profit and its participation constraint. If marginal cost rises
more slowly than average cost, a more powerful buyer might prefer a higher wholesale
price since the resulting increase in quantity could compensate for higher costs while still
maximizing the Nash product. Property 1 prevents this scenario.

Lemma 2. If Property 2 holds, in simultaneous monopolistic bargaining, the equilibrium quantity
𝑞𝑚𝑝 and the upstream markup 𝜇𝑢 are increasing with 𝛽; that is, 𝑑𝑞𝑚𝑝/𝑑𝛽 > 0 and 𝑑𝜇𝑢/𝑑𝛽 > 0.

Lemma 2 states that output increases with buyer power under monopolistic bargaining.
Unlike the monopsonistic case, monopolistic bargaining implies that output gets decided
by 𝐷, so the relationship between wholesale prices and output 𝑞(𝑤) is an input demand
curve, as seen in Figure 1(b). Consequently, an increase in 𝛽 induces movements along
this input demand curve, reducing the seller’s markup and increasing output.

Moving to the sequential bargaining cases, we show that these results hold under
sequential bargaining under additional assumptions.

17See Lemma OA-6 in Appendix D.3 for this result.
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Figure 1: Illustration of the Effects of Buyer Power on Output (Intuition)

(a) Monopsonistic Conduct (b) Monopolistic Conduct
Notes: This figure illustrates how buyer power affects output under two market structures: monopsonistic
bargaining (Panel (a)) and monopolistic bargaining (Panel (b)). For monopsonistic bargaining, increased buyer
power 𝛽 moves output along the marginal cost curve, while for monopolistic bargaining, it shifts output down the
marginal revenue curve.

Lemma 3. Lemma 1 extends to sequential bargaining models under the additional assumptions
that 𝑚𝑐′′(𝑞) ≥ 0 and positive markdown Δ𝑑 ≥ 0.

Lemma 4. Lemma 2 extends to sequential bargaining models under the additional assumptions
that 𝑚𝑟′′(𝑞) ≤ 0 and positive upstream markup 𝜇𝑢 ≥ 0.

Since the bargaining problem in the sequential model internalizes the quantity choice
that involves cost (monopsonistic) and demand (monopolistic) curves, additional restric-
tions on the third derivatives are necessary to obtain these results.

To illustrate our findings, we simulate data using log-linear upstream cost and down-
stream demand curves and solve the simultaneous and sequential bargaining models for
both types of vertical conduct.18 The resulting output-buyer power relationships are shown
in Figure 2(a), for monopsonistic conduct, and Figure 2(b), for monopolistic conduct. Un-
der monopsonistic bargaining, output decreases with buyer power in both simultaneous
and sequential timing, whereas the opposite is true under monopolistic bargaining.

18We use the cost curve 𝑐(𝑞) = 1
1+𝜓 𝑞

𝜓 and demand curve 𝑝(𝑞) = 𝑞1/𝜂, where the marginal cost elasticity is
𝜓 and the downstream demand elasticity is 𝜂. Under these functional forms, the simultaneous bargaining
model yields analytical solutions, which we derive in Appendix D.4. We set the marginal cost elasticity to
𝜓 = 1/4 and the demand elasticity to 𝜂 = −6. The sequential bargaining model, however, does not have
closed-form solutions, so we solve it numerically using first-order conditions.
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Figure 2: Illustration of the Effects of Buyer Power on Output (Simulation)

(a) Monopsonistic Conduct (b) Monopolistic Conduct
Notes: This figure presents numerical simulation results showing how output varies with buyer power under
monopolistic and monopsonistic bargaining. Under monopsonistic conduct (Panel (a)), output decreases with
buyer power in both sequential and simultaneous models, while under monopolistic conduct (Panel (b)), output
increases. The simultaneous monopolistic bargaining model does not have a solution for 𝛽 < 1/6, as we prove in
Appendix D.5.

3.3 Buyer Power vs. Monopsony Power

In the literature, the terms buyer power and monopsony power are often used interchangeably.
To clarify the conceptual distinctions between these concepts, we derive the following
corollary from Lemmas 1–4.

Corollary 1. Under monopolistic bargaining, downstream markdown is always zero, so the buyer
has no monopsony power. Under monopsonistic bargaining, upstream markup is always zero, so
the seller has no monopoly power.

Under monopolistic bargaining, while there may be buyer power (𝛽 > 0), the buyer
markdown is zero, which follows from FOC (3). Hence, there is no monopsony distortion in
this model. Similarly, under monopsonistic bargaining, even with seller power (1− 𝛽 > 0),
the seller markup is always zero, which follows from FOC (4). Hence, there is no double-
marginalization distortion. Monopsony power thus arises only when increased buyer
power reduces output, whereas upstream monopoly power arises only when increased
seller power reduces output. In all other cases, buyer and seller power are countervailing.

3.4 Characterization of the Efficient Level of Buyer Power

After establishing the relationship between output and buyer power across vertical con-
ducts, we analyze their efficiency properties by comparing each conduct to the efficient-
bargaining problem over the two-part tariff given in Equation (6).
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Proposition 2. There exists a bargaining parameter 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) ∈ (0, 1) at which the

monopsonistic bargaining model, the monopolistic bargaining model, and the efficient-bargaining
models imply an identical equilibrium output in both simultaneous and sequential models. We
denote 𝛽∗ as the "efficient level of buyer power."

This proposition shows that at 𝛽∗, output under the monopolistic and monopsonistic
conduct coincides and is equal to the level that would be reached under efficient bargaining.
This property arises because 𝛽∗ is the level of buyer power such that the buyer’s monopsony
power and the seller’s monopoly power exactly offset each other, resulting in an outcome
with neither monopsony nor upstream monopoly distortions. Moreover, this property
holds under both simultaneous and sequential timing assumptions, so 𝛽∗ is the bargaining
power where equilibrium coincides under different timing assumptions.

Since downstream monopsony power is determined by the curvature of the cost curve
and upstream monopoly power by the curvature of the demand curve, 𝛽∗ depends on
these functions in an intuitive way, as we specify in the next corollary.

Corollary 2. The efficient level of buyer power 𝛽∗ weakly decreases with the elasticity of upstream
marginal costs and weakly decreases with the elasticity of downstream demand.

As the elasticity of upstream costs increases, the potential for monopsony power grows.
To counterbalance this effect, the seller requires greater bargaining power, which results
in a lower value of 𝛽∗. Similarly, if downstream demand becomes more inelastic, the scope
for upstream monopoly power increases, so the buyer needs more bargaining power to
countervail the potential upstream monopoly power, increasing 𝛽∗.

Looking at a few special cases is useful to compare our model to existing models in the
vertical relations literature.

Corollary 3. If upstream marginal costs are constant, the efficient level of buyer power is one
(𝛽∗ = 1). If downstream demand is fully elastic, the efficient level of buyer power is zero (𝛽∗ = 0).

As was stated earlier, bargaining models in the empirical IO literature commonly focus
on settings with constant upstream marginal costs. In these models, output is maximized
(and joint profit maximization is achieved) if all bargaining power goes to 𝐷. In contrast,
classical monopsony models often assume that downstream demand is fully elastic, in
which case the output is maximized if 𝑈 has full bargaining power.

3.5 Total and Consumer Surplus Under Monopolistic and Monopsonistic Conduct

Thus far, our analysis has focused on the effects of buyer power on output 𝑞. We now turn to
examining the welfare implications of buyer power under monopolistic and monopsonistic
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bargaining. We define consumer surplus as 𝐶𝑆(𝛽) ≡
∫ 𝑞(𝛽)

0
(
𝑝(ℎ) − 𝑝(𝑞(𝛽))

)
𝑑ℎ and total

surplus as the sum of consumer surplus, upstream profit, and downstream profit.

Proposition 3. Consumer surplus is maximized at 𝛽 = 1 under monopolistic conduct and at 𝛽 = 0
under monopsonistic conduct.

Proposition 3 is intuitive: because consumer surplus increases monotonically with
output, the level of buyer power that maximizes output also maximizes consumer surplus.
Under monopolistic bargaining, this occurs at the corner solution with full buyer power,
whereas under monopsonistic bargaining, it occurs with full seller power.

Proposition 4. Total surplus is maximized at 𝛽†, with 𝛽∗ < 𝛽† ≤ 1 under monopolistic bargaining
and 𝛽† = 0 under monopsonistic bargaining.

Proposition 4 is novel: in bargaining models with constant marginal costs, both con-
sumer surplus and total surplus are maximized at full buyer power. However, with
increasing marginal costs, this result no longer holds. At full buyer power, wholesale and
downstream prices can fall below the marginal cost, as the upstream firm may still earn
positive profits even when the wholesale price is below the marginal cost. In this case, there
is socially inefficient overproduction at full buyer power, and the total-welfare-maximizing
bargaining parameter lies between 𝛽∗ and 1.

Under monopsonistic bargaining, total welfare is maximized with full seller power.
In this scenario, the monopsony model simplifies to the seller making a TIOLI offer to
the downstream firm, leaving the downstream firm with zero profits. The final goods
price 𝑝 then equals the wholesale price 𝑤, which equals upstream marginal costs under
monopsonistic bargaining. As a result, prices equate to marginal costs, which maximizes
total welfare.

4 Endogenous Vertical Conduct

In Section 3, we demonstrated that with increasing upstream marginal costs and decreasing
downstream marginal revenue, both monopsonistic and monopolistic conduct exist across
a range of bargaining parameters but yield opposing output and welfare effects. Hence,
the welfare implications of buyer power depend on the type of vertical conduct, for which
researchers typically have no ex-ante information. In this section, we provide two micro-
foundations that determine which type of vertical conduct arises in equilibrium.

4.1 Selecting Conduct: Nonnegative Markup and Markdown

We start by specifying a participation constraint that pins down vertical conduct, and that
can be used in both the simultaneous and sequential bargaining models.
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Participation Constraint 1. 𝐷 only participates in bargaining if the resulting markdown is
nonnegative, Δ𝑑 ≥ 0. 𝑈 only participates in bargaining if the resulting markup is nonnegative,
𝜇𝑢 ≥ 0.

This condition states that both firms participate in the bargaining process only when
their respective outcomes are nonnegative: the upstream firm requires a nonnegative
markup, and the downstream firm requires a nonnegative markdown. As markups and
markdowns vary with 𝛽, Participation Constraint 1 introduces an equilibrium selection
rule.

Theorem 1. Under Participation Constraint 1, for any bargaining parameter 𝛽, either the monop-
sonistic or the monopolistic bargaining equilibrium exists, but not both. Specifically, the monop-
sonistic equilibrium exists if 𝛽 ≥ 𝛽∗, while the monopolistic equilibrium exists if 𝛽 ≤ 𝛽∗.

Theorem 1 shows that the type of vertical conduct occurring in equilibrium depends on
how the bargaining parameter 𝛽 compares to the efficient level of buyer power 𝛽∗. When
𝛽 ≥ 𝛽∗, the upstream markup becomes negative in monopolistic bargaining, requiring the
equilibrium to take the form of monopsonistic vertical conduct. Conversely, when 𝛽 ≤ 𝛽∗,
the downstream markdown becomes negative in monopsonistic bargaining, requiring mo-
nopolistic vertical conduct in equilibrium. Thus, the assumption of nonnegative markups
and markdowns provides a selection rule between the two vertical conduct types.19

We illustrate this selection rule in the decision tree of Figure 3 for simultaneous bar-
gaining. The nonnegative markup and markdown assumption can be imposed as a par-
ticipation constraint at the end of the decision tree by stating that one of the two agents in
the model refuses to trade if their markup or markdown is negative. This implies that for
a given level of the bargaining parameter, either monopsonistic or monopolistic conduct
exists.

Theorem 1 leads to one of the central findings of the paper: an increase in buyer power
creates monopsony distortion (reducing output) when 𝛽 > 𝛽∗, but counteracts upstream
market power (increasing output) when 𝛽 < 𝛽∗. Conversely, an increase in seller power
causes monopoly distortion when 𝛽 < 𝛽∗, but offsets monopsony power when 𝛽 > 𝛽∗.

Corollary 4. An increase in buyer power 𝛽 lowers output if 𝛽 > 𝛽∗ but increases output if 𝛽 < 𝛽∗

in both simultaneous and sequential models.

In Figure 4(a), we combine Figures 1(a) and 1(b) to illustrate the

V

-shaped relationship
between output and buyer power that follows from Corollary 4. From 𝛽 = 0 to 𝛽∗, the

19The positive markup and markdown constraints imply that the restrictions imposed in Lemmas 3 and 4 are
never binding.
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Figure 3: Decision Tree: Participation Constraint 1

𝑚𝑎𝑥𝑤 (𝜋1−𝛽
𝑢 𝜋

𝛽
𝑑
)

𝑚𝑎𝑥𝑞 (𝜋𝑢)
U picks q:

Bargaining:

D picks q:
𝑚𝑎𝑥𝑞 (𝜋𝑑)

𝑤 > 𝑚𝑟 𝑤 ≤ 𝑚𝑟 𝑤 < 𝑚𝑐 𝑤 ≥ 𝑚𝑐

D refuses D agrees U refuses U agrees

[Stage 1:]

(𝑞𝑚𝑠 , 𝑤𝑚𝑠) (𝑞𝑚𝑝 , 𝑤𝑚𝑝)(0, 0) (0, 0)

[Stage 0:]
U,D observe 𝛽, 𝑐(.), 𝑝(.)

𝛽 < 𝛽∗ 𝛽 ⩾ 𝛽∗ 𝛽 ⩽ 𝛽∗𝛽 > 𝛽∗

Notes: This decision tree illustrates the bargaining game under the conduct selection rule in Section 4.1.

conduct is monopolistic bargaining, with the input price-output relationship tracing the
input demand curve. In this range, increasing buyer power transitions the outcome from
successive monopoly to efficient bargaining. Once 𝛽 > 𝛽∗, the vertical conduct shifts to
monopsony, and the relationship between input price and output follows a factor supply
curve. Further increases in buyer power result in movement along this supply curve,
progressing from the efficient-bargaining outcome toward classical monopsony at 𝛽 = 1.

We illustrate the first conduct selection rule by reusing the numerical example from
Section 3. In Figure 4(b), we indicate the eliminated points at which 𝑤 < 𝑚𝑐 and at which
𝑤 > 𝑚𝑟 as the shaded blue and green lines. In line with Theorem 1, this generates a

V

-shaped relationship between output and buyer power.

Discussion of the Nonnegative Markups and Markdowns Constraint

Even with a negative upstream markup, the upstream party can still earn positive profits
from trading due to its inframarginal production units; a negative markup merely indicates
that the marginal production unit operates at a loss. Similarly, the downstream party can
realize gains from trade under negative markdowns, again due to its inframarginal units.
Therefore, whether the nonnegative markup and markdown assumptions are reasonable
depends on the feasibility of internal transfers within parties. For example, in the case of
labor unions, given in Example 1, nonnegative markup is likely to hold: it seems highly
unrealistic for unions to subsidize some workers to accept wages below their reservation
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Figure 4: The Effects of Buyer Power on Output With Endogenous Conduct

(a) Intuition (b) Simulation
Notes: This figure illustrates the relationship between buyer power (𝛽) and output (𝑞) in models with endogenous
conduct under different timing assumptions. Panel (a) provides the intuition, showing how equilibrium wholesale
price (𝑤) and quantity are determined by the input supply and input demand curves. Panel (b) presents numerical
simulation results for simultaneous and sequential bargaining. As buyer power (𝛽) increases, output behavior
diverges depending on whether the wholesale price is less than or greater than marginal cost (𝑤 < 𝑚𝑐) or marginal
revenue (𝑤 > 𝑚𝑟). The orange dashed line indicates the threshold of 𝛽∗, where the relationship transitions.

wage. In the context of wholesale price bargaining between multi-establishment firms,
as in Example 3, it is plausible that plant managers would resist overseeing loss-making
production units.

Testing the Vertical Conduct Selection Rules

While the realism of the nonnegative markups and markdowns constraint depends on the
context, a key advantage is its empirical verifiability. In Proposition 5 below, we show
that the weakly positive markup and markdown restriction in Participation Constraint 1
ensures that equilibrium output is bounded from above by the efficient-bargaining output
level, 𝑞∗. This property can be empirically tested by examining whether observed output
levels fall below the equilibrium output level predicted by efficient bargaining.

Proposition 5. The restrictions 𝜇𝑢 ≥ 0 and Δ𝑑 ≥ 0 ensure that equilibrium output is always
smaller than or equal to the efficient-bargaining output level 𝑞∗.

4.2 Selecting Conduct: Incentive Compatibility of Linear Pricing

The sequential bargaining model has the benefit of offering a different participation con-
straint that does not directly impose nonnegative markups and markdowns. We introduce
the possibility that firms bargain efficiently by setting a nonlinear wholesale price con-
tract, such as a two-part tariff. Such a nonlinear price contract would lead firms to reach
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an efficient-bargaining solution if it is incentive-compatible.

Participation Constraint 2. 𝐷 and𝑈 choose 𝑞 unilaterally only if they cannot earn higher profits
by bargaining over (𝑞, 𝑤) instead:

𝜋𝑚𝑠
𝑢 (𝑞𝑚𝑠 , 𝑤𝑚𝑠) ≥ 𝜋

𝑗
𝑢(𝑞∗, 𝑤∗)

𝜋
𝑚𝑝

𝑑
(𝑞𝑚𝑝 , 𝑤𝑚𝑝) ≥ 𝜋

𝑗

𝑑
(𝑞∗, 𝑤∗)

where 𝜋
𝑗
𝑢 and 𝜋

𝑗

𝑑
correspond to upstream and downstream profit under efficient bargain-

ing. Participation Constraint 2 states that U and D are willing to commit to making an
output choice in Stage 2 only if the resulting profit surpasses the profit they would earn
under efficient-bargaining (i.e., the profit they would earn when not setting output unilat-
erally, but by joint bargaining over output and wholesale prices). The resulting decision
tree is visualized in Figure 5.

Theorem 2. Under Participation Constraint 2, for any 𝛽, either the monopsonistic or the monopo-
listic bargaining equilibrium exists, but not both. Specifically, the monopsonistic equilibrium exists
if 𝛽 ≥ 𝛽∗, while the monopolistic equilibrium exists if 𝛽 ≤ 𝛽∗.

Theorem 2 implies, by revealed preference, that if we observe a linear price contract,
then our conduct selection criterion is satisfied: if 𝛽 < 𝛽∗, the upstream firm determines
output, whereas if 𝛽 > 𝛽∗, the downstream firm determines output. If 𝛽 = 𝛽∗, neither party
has the incentive to determine output, and firms simply maximize joint profits.

The finding that firms are unwilling to unilaterally move to joint profit maximization
under the sequential model has a broader implication for full-information vertical bargain-
ing models, given that a key criticism of this class of models is that linear pricing behavior
is not Pareto-optimal if nonlinear pricing is possible (Lee et al., 2021). In our model, the
reason why firms do not bargain efficiently can be explained by a holdup problem due to
a lack of commitment. Under commitment, profit maximization could be reached at any
stage of the model and would be Pareto-optimal: both firms could become better off by
moving to joint profit maximization and transferring profits. However, we assume that
the bargaining weights 𝛽 are predetermined and fixed and that firms cannot commit to
choosing output ex-ante. Either party could try to convince the other party not to set
quantities in the second stage by bargaining less aggressively in the first stage, but the
inability to commit to this prevents such agreements from happening in our model. This
holdup rationalization of linear price contracts has similarities to prior work on vertical
contracts, such as Iyer and Villas-Boas (2003), in which shocks in between the time of
signing the contract and delivery induce firms not to negotiate over two-part tariffs.
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Figure 5: Decision Tree: Participation Constraint 2

𝑚𝑎𝑥𝑤 (𝜋1−𝛽
𝑢 𝜋

𝛽
𝑑
)

𝑚𝑎𝑥𝑞 (𝜋𝑢)

Bargaining:

𝑚𝑎𝑥𝑞 (𝜋𝑑)

𝛽 < 𝛽∗

𝜋𝑚𝑠
𝑢 < 𝜋

𝑗
𝑢 𝜋

𝑚𝑝

𝑑
≥ 𝜋

𝑗

𝑑

[Stage 1:]

[Stage 2:]

[Stage 0:]

𝑚𝑎𝑥𝑤 (𝜋1−𝛽
𝑢 𝜋

𝛽
𝑑
)

Bargaining:

U sets q if D sets q if

𝛽 ⩾ 𝛽∗

𝜋𝑚𝑠
𝑢 ≥ 𝜋

𝑗
𝑢

𝜋𝑚𝑠
𝑢 > 𝜋

𝑗
𝑢 : 𝜋

𝑚𝑝

𝑑
> 𝜋

𝑗

𝑑
:

𝜋
𝑚𝑝

𝑑
< 𝜋

𝑗

𝑑

𝛽 ⩽ 𝛽∗ 𝛽 > 𝛽∗

U, D observe 𝛽, 𝑐(.), 𝑝(.)

Notes: This decision tree illustrates the bargaining game under the conduct selection rule in Section 4.2.

4.3 Welfare Effects of Buyer and Seller Power Under Endogenous Vertical Conduct

Now that we have developed an integrated framework that nests both monopolistic and
monopsonistic bargaining models, we apply our framework to address the key question
of this paper, namely to understand the extent to which welfare losses from market power
in vertical relations are due to buyer power and to seller power. We continue the analysis
of welfare that was introduced in Section 3.5, but we introduce our notion of endogenous
vertical conduct to this welfare analysis.

Under both of our conduct selection criteria, vertical conduct is monopolistic if 𝛽 < 𝛽∗

and monopsonistic if 𝛽 > 𝛽∗. Hence, a monopolistic distortion will exist for low levels
of 𝛽 relatively to 𝛽∗, and a monopsonistic distortion will exist for high levels of 𝛽. To
identify both the level of total market power distortions and the extent to which it is
caused by buyer and/or seller power, we need to know the level of buyer power 𝛽, which
can be estimated, and the efficient level of buyer power 𝛽∗, which can be computed by cost
and demand estimates. Therefore, the determinants of the efficient level of buyer power
analyzed in Section 3.4 play a crucial role for understanding the sources of market power
distortions. All else equal, a more inelastic downstream demand implies that monopolistic
conduct becomes more likely, requiring higher levels of buyer power to reach the efficient
bargaining benchmark, whereas a more inelastic upstream cost implies that monopsonistic
conduct is more likely, requiring more seller power instead.
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Proposition 6. Under either conduct selection criteria from Participation Constraint 1 or Partic-
ipation Constraint 2, both consumer surplus and total surplus are maximized at the efficient level
of buyer power 𝛽∗.

For consumer surplus, this proposition is trivial because consumer surplus is monotoni-
cally increasing in output, and output was already shown to be maximized at the efficient
level of buyer power in Corollary 4. For total surplus, we note that the bargaining pa-
rameters that maximized total surplus under monopolistic and monopsonistic conduct
in Proposition 4 are ruled out by both Constraints 1 and 2, as either the markdown or
markup are negative under those bargaining parameter values. As a result, under both
the monopolistic and the monopsonistic bargaining models, total surplus is maximized at
the efficient level of buyer power 𝛽∗.20

4.4 Implications for Antitrust Policy

Our results have important implications for understanding the effects of both horizontal
and vertical mergers.

Horizontal Merger Policy

Assume that a horizontal merger between downstream firms increases downstream bar-
gaining ability.21 Under monopolistic bargaining on the wholesale market, increased
buyer power due to the downstream merger reduces downstream marginal costs, thereby
increasing output and both consumer and total welfare. Hence, all else equal, the regulator
is more likely to approve the merger in the presence of this bargaining effect, as discussed
in Grennan (2013), Nevo (2014), and Sheu and Taragin (2021). However, under monop-
sonistic bargaining, horizontal mergers have the opposite welfare effect, as discussed in
Berger et al. (2023): the associated increase in buyer power now reduces output and both
consumer and total welfare.

Our model provides insight into when downstream mergers create either distortionary
or countervailing effects. Let 𝛽0 represent premerger buyer power and 𝛽1 represent post-
merger buyer power. Our model implies that if 𝛽0 < 𝛽1 ≤ 𝛽∗, monopolistic bargaining
occurs both pre- and postmerger, and the merger increases output due to countervailing
force. This should make regulators more lenient. However, if 𝛽0 > 𝛽∗, vertical conduct is

20The results in this paper analyze partial equilibria. In models that consider the welfare effects of monopoly
or monopsony power in general equilibrium, the relevant object to characterize inefficiency is usually not the
level, but the dispersion of the markups and/or markdowns Atkeson and Burstein (2008); Berger et al. (2022).
In the context of our model, this implies that welfare would be a function of the dispersion of markups for
any bargaining relationships in which 𝛽 < 𝛽∗, and of markdowns in any relationships in which 𝛽 > 𝛽∗.

21In Section 5, we consider the more widely used case in which bargaining ability is invariant but the relative
disagreement payoff of downstream compared to upstream increases, which leads to the same implications.
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monopsonistic, and a horizontal merger between downstream firms decreases output due
to increasing monopsony power. This should induce regulators to be less lenient about the
merger. If 𝛽0 < 𝛽∗ but 𝛽1 > 𝛽∗, vertical conduct changes after the merger, and the net effect
of the merger on output can be positive or negative depending on the relative size of the
monopsony and monopoly distortions. A parallel analysis applies to upstream mergers.

Our analysis ideally requires knowledge of both the premerger level of buyer power
𝛽 and the efficient level of buyer power 𝛽∗. However, even in the absence of 𝛽, which is
nontrivial to estimate (as doing so requires observing wholesale prices and/or quantities),
𝛽∗ can be readily estimated using only cost and demand function primitives and can still
be useful. A high 𝛽∗ would suggest that increased buyer power likely raises output,
while a low 𝛽∗ would indicate the opposite. As a result, the estimate of 𝛽∗ can serve
as a screening tool without requiring the estimation of a full bargaining model. In our
empirical applications, we illustrate these two alternative ways of using our model: in
Section 6, we estimate only 𝛽∗, whereas in Section 7, we estimate both 𝛽∗ and 𝛽.

Vertical Merger Policy

In vertical mergers, our model is useful for quantifying potential welfare effects from elim-
ination of double marginalization (Chipty, 2001; Crawford et al., 2018; Luco and Marshall,
2020). As discussed in Section 3, under a fixed model of vertical conduct, consumer sur-
plus is maximized at the corner solutions 𝛽 = 0 or 𝛽 = 1. However, when taking into
account endogenous vertical conduct, the picture changes: the welfare gains from vertical
integration increase with the distance between the initial bargaining parameter and the
output-maximizing bargaining parameter, |𝛽−𝛽∗ |. As a result, similar to horizantal merger
analysis, the knowledge of 𝛽 and 𝛽∗ allows one to quantify the potential benefits of vertical
mergers.

5 Extensions

This section extends our model along several dimensions. We perform comparative statics
based on disagreement payoffs rather than bargaining weights, introduce competition
among buyers, consider settings involving multiple buyers and sellers, and analyze the
model when downstream firms utilize multiple inputs.

5.1 Nonzero Disagreement Payoffs

In our main results, we conducted comparative statics with respect to the bargaining pa-
rameter 𝛽, while keeping disagreement payoffs fixed and normalized to zero. However,
in horizontal merger analysis with bargaining, it is more likely that a merger alters firms’
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Figure 6: Output and Relative Outside Options

Notes: This figure illustrates the relationship between output (𝑞) and the relative outside options, represented as the
difference between the buyer’s disagreement payoff and the seller’s disagreement payoff. The blue line represents
the simultaneous monopolistic bargaining case, while the red line represents the simultaneous monopsonistic
bargaining case. Output increases in monopolistic bargaining as the buyer’s relative disagreement payoff improves,
while in monopsonistic bargaining, output decreases as the seller’s relative disagreement payoff becomes stronger.

outside options instead of their bargaining weights (Hemphill and Rose, 2018). To accom-
modate this, we incorporate nonzero disagreement payoffs into the bargaining problem
as follows:

max
𝑤

[(𝑝(𝑞)𝑞 − 𝑤𝑞 − 𝑜𝑑𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞 − 𝑜𝑢𝑞)1−𝛽].

Here, 𝑜𝑑 and 𝑜𝑢 represent the per-unit profits that downstream and upstream firms can
earn in the event of a disagreement. The following theorem analyzes how equilibrium
output changes with 𝑜𝑑 and 𝑜𝑢 .

Theorem 3. Under monopolistic bargaining, output increases with the buyer’s disagreement payoff
and decreases with the seller’s disagreement payoff, 𝑑𝑞/𝑑𝑜𝑑 > 0 and 𝑑𝑞/𝑑𝑜𝑢 < 0. Under monop-
sonistic bargaining, output decreases with the buyer’s disagreement payoff and increases with the
seller’s disagreement payoff, 𝑑𝑞/𝑑𝑜𝑑 < 0 and 𝑑𝑞/𝑑𝑜𝑢 > 0.

See Appendix E.1 for the proof. Theorem 3 establishes that the comparative statics
of output with respect to the bargaining weight in the previous section also hold when
output is expressed as a function of the buyer’s disagreement payoff. We demonstrate this
in Figure 6 using the same numerical example as before.22 A higher buyer disagreement
payoff increases output under the monopolistic model but decreases it under the monop-
sonistic model. When we apply our conduct selection rule of nonnegative markups and
markdowns, we observe a similar

V

-shaped relationship between disagreement payoff

22See Appendix E.1 for details on extending the log-linear model to incorporate nonzero disagreement payoffs.
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and output. In this case, there exists an output-maximizing disagreement payoff, with
the conduct determined by whether the actual disagreement payoff is above or below this
optimal level.

5.2 Multiple Buyers That Compete Downstream

Our baseline model examined a single supplier selling to a single buyer. This frame-
work extends naturally to settings with multiple competing buyers by incorporating their
residual downstream demand.

As an example, we develop a Cournot model where multiple downstream firms com-
pete oligopolistically in their product market and present a numerical implementation in
Appendix E.2. In contrast to the single-buyer case, where the downstream firm makes de-
cisions based on the market-level demand elasticity−𝜂, firms now optimize with respect to
a residual demand elasticity under oligopolistic competition. As a result, a higher number
of competing firms in the downstream market leads to more elastic residual demand and
a lower efficient level of buyer power 𝛽∗. This suggests that increased competition in the
downstream market makes monopsonistic conduct in the wholesale market more likely,
as the range of 𝛽 for which equilibrium conduct is monopsonistic becomes wider.

5.3 Multiple Buyers and Sellers

In most industries, upstream and downstream markets comprise multiple firms engaging
with various counterparts. Our framework extends to these settings through the passive-
belief assumption, commonly used in the "Nash-in-Nash" approach of Horn and Wolinsky
(1988). This assumption states that firms expect all other equilibrium outcomes to remain
unchanged regardless of the outcome of their current negotiation.23 Within this framework,
one can calculate the gains from trade by conditioning on the equilibrium outcomes of
other negotiations to operationalize our model. Our empirical application in Section 7
examines such a setting.

5.4 Multi-Input Downstream Production Function

In our model, we assumed that the downstream firm operates with a single-input pro-
duction function, simply selling the input in the downstream market after applying a
markup. In Appendix E.3, we extend this framework to accommodate a multi-input
downstream production function. We show that the bargaining problem remains largely
similar, with a few modifications. In monopsonistic bargaining, the upstream firm’s output
choice no longer directly determines the downstream output level. Instead, it affects the

23For extensions of this assumption, see Ho and Lee (2019).
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downstream output through a monotone function, as the downstream firm can partially
substitute other inputs to adjust its production. Similarly, in monopolistic bargaining, the
downstream firm’s output choice no longer directly dictates the upstream quantity but
influences it through a monotone input demand function.

The multi-input production function introduces an additional parameter that influ-
ences the model’s comparative statics: the elasticity of substitution between inputs. As
the elasticity of substitution approaches zero, the production function converges to a
Leontief form, establishing a one-to-one relationship between upstream and downstream
outputs—effectively equivalent to our baseline model. Conversely, as the elasticity of sub-
stitution increases, the connection between upstream and downstream outputs weakens,
reducing the influence of buyer and seller power within the vertical chain.

6 Empirical Illustrations: Labor Unions and Farmer Cooperatives

To quantify the total distortions from market power and decompose these into monopsony-
and monopoly-induced welfare losses, one needs to estimate both the actual level of
buyer power 𝛽 and the efficient level of buyer power 𝛽∗. In addition to cost and demand
data, which are needed to estimate 𝛽∗, wholesale price data is required for estimating 𝛽.
Whereas this data is readily available in many labor applications in the form of wage data
in employer-employee datasets, transaction-level wholesale prices are less often observed
in IO applications.24

However, even if transaction-level wholesale prices are unobserved, our model can be
used to study the sources of market power distortions, as the efficient level of buyer power
can still be estimated using the cost and demand primitives. To illustrate this, we analyze
two case studies by calibrating our model using prior estimates from the literature: labor
unions in the U.S. construction industry and farmer cooperatives in the Chinese tobacco
industry. The details of these empirical applications are provided in Appendix F.

6.1 Labor Unions

A natural application of our model is collective wage bargaining, as introduced in Example
1. Given the growing empirical evidence of monopsony power in labor markets (Card et al.,
2018; Berger et al., 2022; Lamadon et al., 2022; Yeh et al., 2022), an important question is
whether labor unions can effectively counteract such power. To provide insights into this
question, we calibrate a first-order approximation of our model using estimates from Kroft
et al. (2020), who study the U.S. construction industry under monopsonistic competition

24However, the increased availability of administrative firm-to-firm transaction data make transaction-level
wholesale prices increasingly observed.

26



Table 1: Calibrated Empirical Applications

Industry Sources 𝜓 𝜂 𝛽∗

U.S. construction workers Kroft et al. (2020) 0.29 -7.30 0.42

Chinese tobacco farmers Rubens (2023), 1.904 -1.14 0.92
Ciliberto and Kuminoff (2010)

for workers, which implies that 𝛽 = 1 according to our notation.25 This assumption is
plausible in this setting because only 10% of U.S. construction workers are represented by
a labor union, according to the Bureau of Labor Statistics (BLS).26

However, suppose that construction workers were fully unionized. To what extent
would this countervail employer monopsony power, and what level of union bargaining
power would maximize total output? The answer depends critically on 𝛽∗, which we derive
in Appendix D.4 using a log-linear approximation of our model:

𝛽∗ =

(
1 + 𝜂

1 + 𝜓
− 𝜂

)−1
,

where 𝜂 is the own-price elasticity of downstream demand and 𝜓 the inverse elasticity of
labor supply. Using the estimated values for these two primitives from Kroft et al. (2020)
given in Table 1, we calculate the efficient level of buyer power 𝛽∗ to be 0.42.

This estimate suggests that collective wage bargaining requires careful consideration
as a solution to countervail employer monopsony power. If the resulting labor union
became too powerful—which would occur at a union bargaining weight exceeding 0.58 (1-
𝛽∗)—it would replace the downstream monopsony distortion with an upstream monopoly
distortion through double marginalization by the labor union.

6.2 Farmer Cooperatives

As a second illustration of our model, we consider the seller cooperatives discussed in Ex-
ample 2. We apply our model to the context of Chinese tobacco farmers selling to cigarette
manufacturers, leveraging supply elasticities estimated by Rubens (2023), in which the
model is estimated under the oligopsony assumption (𝛽 = 1). This assumption is reason-
able in this context, as a concentrated group of cigarette manufacturers purchases tobacco
leaves from many small farmers.

25For a full estimation of a bargaining model within a specific union-employer bargaining context, see Anger-
hofer et al. (2024).

26https://www.bls.gov/news.release/pdf/union2.pdf.
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A natural question arising in this setting is how the introduction of a farmers’ coop-
erative, bargaining collectively with cigarette manufacturers, would affect outcomes. To
determine the efficient-bargaining parameter for this example, we use leaf supply elas-
ticities estimated by Rubens (2023) and cigarette demand elasticities from Ciliberto and
Kuminoff (2010), as shown in Table 1. Despite the highly inelastic supply from farmers,
we estimate the efficient level of buyer power of 𝛽∗ = 0.92, which is close to the unilateral
monopsony case of 𝛽 = 1. This indicates that near-complete monopsony power repre-
sents the welfare-maximizing bargaining weight in this industry, at least when abstracting
from other inefficiencies of monopsony power, such as cost misallocation (Rubens, 2023).
The key factor driving this high efficient level of buyer power is the inelastic demand for
cigarettes, which is unsurprising given the addictive nature of the product.27

7 Empirical Application: Coal Procurement

In contrast to the analysis in the previous section, where we only estimated 𝛽∗, we now turn
to an application that estimates actual buyer power 𝛽 within a bargaining model alongside
𝛽∗. We analyze coal procurements of power plants from mining firms while allowing for
(i) rich heterogeneity in cost elasticities, demand elasticities, and bargaining parameters,
(ii) multiple sellers and buyers, and (iii) oligopolistic competition in the downstream
electricity market. For mining cost, we estimate the marginal cost of individual mines and
aggregate them at the firm-level, representing an example of multiunit suppliers discussed
in Example 3. In modeling electricity markets, we closely follow the classic papers in the
literature (Wolfram, 1999; Borenstein and Bushnell, 1999; Borenstein et al., 2002; Puller,
2007). The main objective of the model is to decompose the total welfare losses from
market power into monopolistic and monopsonistic distortions.

7.1 Data Sources and Summary Statistics

Our empirical setting is the Texas ERCOT (Electric Reliability Council of Texas) market,
which has been previously studied in the IO literature (Hortaçsu and Puller, 2008; Hortaçsu
et al., 2019). The ERCOT market offers three key advantages: (i) it operates independently
with no trade between regions, (ii) most power plants are deregulated, and (iii) hourly
price and generation data are readily accessible. We limit our sample to the 2005–2015
period, as this timeframe has a stable market share of coal power plants (≈20%) and largely

27Other studies estimating cigarette demand elasticities, such as Liu et al. (2015) and Lopez and Pareschi (2024),
report elasticities below one. These estimates are inconsistent with our model of static profit maximization,
as they imply that manufacturers would be pricing on the inelastic portion of the demand curve. Applying
our efficient level of buyer power formula in such cases would yield an efficient level of buyer power above
one, which lies outside the bargaining range considered in our model.
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Table 2: Summary Statistics

Upstream Downstream

Panel A. Unit Characteristics

Number of units (plant or mine) 25 9
Number of firms 9 3
Number of units per firm 2.51 2.88
Avg. number of trade partners 22.09 2.65
Avg. share of largest partner 0.42 0.53

Panel B. Transaction Characteristics

Average FOB price (per MMBtu) - 0.85
Contract duration (years) - 1.42
Share of spot-market transactions - 0.04
Share of railroad transportation - 0.77

precedes the significant wave of coal-mine closures that began in the early 2010s.
We combine data from Velocity Suite, CostMine, the BLS, and the Mine Safety and

Health Administration (MSHA). Velocity Suite compiles data from various sources for the
power industry; CostMine provides engineering estimates of mining costs; the BLS pro-
vides wage data; and MSHA provides information on mine characteristics and production.
We describe these sources in detail in Appendix G.1.

Table 2 presents summary statistics describing vertical market structure in the dataset.
Nine mining firms that operate 25 mines sell coal to three power-generation firms with
nine power plants. On average, mining firms deal with 22.09 partners, including some
that are not in ERCOT, while power firms engage with a more limited network of just 2.65
partners. These interactions are primarily governed by medium-term contracts, with an
average duration of 1.42 years.

7.2 Model Primitives

Our empirical framework involves estimating a bargaining model between coal-mining
firms (’upstream’) and power-generating firms (’downstream’). We begin by estimating
the model’s key primitives: the cost curves for mining firms, power firms, and the residual
electricity demand faced by power firms. We then analyze the bargaining model. The
primitives and bargaining model are estimated each year separately, but we omit year
subscripts to keep the notation simple. A summary table of notation used in the model is
provided in Table OA-2.
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7.2.1 Cost Curve of Mining Firms

Each upstream mining firm 𝑢 has a portfolio of 𝑛𝑢 coal mines, indexed by 𝑖, that have
marginal costs 𝑐𝑖𝑢 and capacity 𝑘𝑐

𝑖𝑢
. We assume that within a mine, marginal cost is

constant and determined by mine characteristics and labor costs.
To estimate mine-level marginal costs, we first specify their production function. A

mine 𝑖 owned by firm 𝑢 produces 𝑞𝑐
𝑖𝑢

short tons of coal using 𝑙𝑖𝑢 hours of labor and 𝑚𝑖𝑢

amount of intermediate inputs according to the following production function:

𝑞𝑐𝑖𝑢 = min{𝑙𝑖𝑢 ; 𝛾𝜃(𝑖𝑢)𝑚𝑖𝑢}𝜔𝑖𝑢 ,

where 𝜔𝑖𝑢 is mine productivity. This specification accommodates production heterogene-
ity through the parameter 𝛾𝜃(𝑖𝑢), which determines the labor-materials ratio as a function
of mine type 𝜃 based on capacity, vein thickness, and mining technology. It also assumes
that labor and intermediate inputs are perfect complements—a reasonable assumption
given the limited substitution possibilities between them in coal production in the short
run (Byrnes et al., 1988).

Denoting hourly labor wages as 𝑤 𝑙
𝑖𝑢

and material unit costs as 𝑝𝑚
𝑖𝑢

, the marginal cost
𝑐𝑖𝑢 is equal to average costs as long as capacity 𝑞̄𝑖𝑢 is not reached:

𝑐𝑖𝑢 =
𝑤 𝑙

𝑖𝑢
𝑙𝑖𝑢 + 𝑝𝑚

𝑖𝑢
𝑚𝑖𝑢

𝑞𝑐
𝑖𝑢

if 𝑞𝑐𝑖𝑢 ≤ 𝑘𝑐𝑖𝑢 , (7)

To estimate marginal costs, we use the Coal Cost Guide, published by an industry research
firm CostMine, to obtain the engineering estimates of labor-to-material-cost ratios for
various mine types 𝜃, as 𝛾𝜃(𝑖𝑢) =

𝑝𝑚
𝑖𝑢
𝑚𝑖𝑢

𝑤 𝑙
𝑖𝑢
𝑙𝑖𝑢

.28 Then, the marginal cost expression becomes

𝑐𝑖𝑢 = 𝑤 𝑙
𝑖𝑢

𝑙𝑖𝑢

𝑞𝑐
𝑖𝑢

(1 + 𝛾𝜃(𝑖𝑢)) if 𝑞𝑐𝑖𝑢 ≤ 𝑘𝑐𝑖𝑢 , (8)

which can be estimated using wage and labor data. This expression provides the marginal
cost in terms of unit weight. However, it is useful to distinguish coal quantity by weight
and heat content (measured in millions of British thermal units, or MMBtu), as heat content
mainly determines coal’s value as an input in electricity generation. To convert between
weight and heat content, we introduce a mine-specific conversion factor 𝜆𝑖𝑢 such that
𝑞𝑖𝑢 = 𝜆𝑖𝑢𝑞

𝑐
𝑖𝑢

and 𝑘𝑖𝑢 = 𝜆𝑖𝑢𝑘
𝑐
𝑖𝑢

. The value of 𝜆𝑖𝑢 depends on the coal type and mining area,
serving as an important source of heterogeneity across mines. With this conversion, we

28The coal Cost Guide has been used in the mining engineering literature (Shafiee and Topal, 2012).
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define quantities and marginal costs in terms of MMBtu for the rest of the paper.
Using individual mine marginal costs, the firm-level cost curve can be constructed by

taking the cumulative production cost after ordering mines from lowest to highest cost. In
particular, we obtain the following cost function at the firm level:

𝐶𝑢(𝑄, 𝑐𝑢 , 𝑘𝑢) =

∑𝑛𝑢

𝑖=1 𝑐𝑖𝑢 max
{
0,min

[
𝑘𝑖𝑢 , 𝑄 −∑𝑖−1

𝑙=1 𝑘𝑙𝑢
]}

, if 0 ≤ 𝑄 ≤ ∑𝑛𝑢
𝑖=1 𝑘𝑖𝑢 ,

∞, if 𝑄 >
∑𝑛𝑢

𝑖=1 𝑘𝑖𝑢

where the vector 𝑐𝑢 := {𝑐𝑖𝑢}𝑛𝑢𝑖=1 is such that 𝑐1𝑢 ≤ 𝑐2𝑢 ≤ · · · ≤ 𝑐𝑛𝑢𝑢 and 𝑘𝑢 is the vector of
mine capacities.

7.2.2 Cost Curve of Power Firms

A downstream power firm 𝑑 operates a portfolio of 𝑛𝑑 generation assets. Each asset 𝑗

is characterized by a constant marginal cost 𝑐 𝑗𝑑 and a capacity 𝑘 𝑗𝑑𝑡 . The capacity can be
time-varying due to the intermittency of renewable energy sources across seasons and
hours of the day. We therefore define capacity values for each hour type 𝑡, which captures
specific combinations of month, hour of day, and weekend/weekday status.

The marginal cost of generation units depends on fuel prices and their efficiency, which
is measured by the heat rate for fossil fuel generators. We define marginal costs as follows:

𝑐 𝑗𝑑 =


(𝑤𝑑 + 𝜅 𝑗𝑑)ℎ 𝑗𝑑 if coal

𝑤𝑔ℎ𝑑𝑗 if gas

0 if nuclear and renewables

where ℎ 𝑗𝑑 is the (inverse) heat rate of generation unit 𝑗, 𝑤𝑔 is the natural gas prices that
are common across natural gas generators, and 𝑤𝑑 is the weighted average FOB coal price
negotiated by firm 𝑑. We also add the per MMBtu transportation cost 𝜅 𝑗𝑑 from the basin
firm 𝑑 operates to generator 𝑗 if the generation is a coal generator.29 We assume the heat
rate of generators is constant within a year, which we calculate by dividing the total heat
input by the total electricity generation in a given year.30

29By treating transportation costs 𝜅 𝑗𝑑 as exogenous, we do not explicitly model railroad firms as a third agent
in the value chain. Prior research has found the market power of railroad companies to be important in
coal procurement markets (Preonas, 2023). In the context of our model, the upstream agents can be viewed
as jointly representing coal firms and railroad operators rather than solely coal firms. For instance, if coal
firms and railroad companies would bargain efficiently, one can view upstream as a joint-profit-maximizing
entity that combines the mining firms and railroad companies. As a result, the statements about double
marginalization by coal firms can be alternatively interpreted as double marginalization arising from railroad
companies’ market power.

30We calculate the marginal cost using coal prices from the transaction data, transportation costs, and the
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To calculate the time-varying capacity 𝑘 𝑗𝑑𝑡 , we cannot rely solely on the nameplate
capacity, as fossil-fuel power plants are subject to maintenance downtime, and renewable
energy sources experience intermittency. Instead, we compute a capacity factor for each
unit. For fossil-fuel units, we derive fuel-type-specific capacity factors using Generating
Availability Data System (GADS) data. For renewables, we calculate the capacity factor by
averaging production for a given hour type and dividing it by the nameplate capacity.

Using unit-level capacity and cost data, firm-level cost of 𝑑 in hour 𝑡 is constructed
by arranging all generators in ascending order of marginal cost and then calculating the
cumulative production cost. Specifically, the cost curve is expressed in the following form:

𝐶𝑑𝑡(𝑄, 𝑐𝑑 , 𝑘𝑑𝑡) =

∑𝑛𝑑

𝑗=1 𝑐 𝑗𝑑 max
{
0,min

[
𝑘 𝑗𝑑𝑡 , 𝑄 −∑𝑗−1

𝑙=1 𝑘𝑙𝑑𝑡

]}
, if 0 ≤ 𝑄 ≤ ∑𝑛𝑑

𝑗=1 𝑘 𝑗𝑑𝑡 ,

∞, if 𝑄 >
∑𝑛𝑑

𝑗=1 𝑘 𝑗𝑑𝑡

where the vector 𝑐𝑑 := {𝑐 𝑗𝑑}𝑛𝑑

𝑗=1 is such that 𝑐1𝑑 ≤ 𝑐2𝑑 ≤ · · · ≤ 𝑐𝑛𝑑𝑑 and 𝑘𝑑𝑡 is the vector of
generator capacities.

7.2.3 Downstream Electricity Demand

We model competition in the electricity market using a Cournot framework following the
prior literature (Borenstein and Bushnell, 1999; Borenstein et al., 2002). In this model,
regulated firms and small firms act as price takers, while larger firms behave strategically.
Since both demand and available capacity vary hourly, we estimate separate Cournot
models for each hour type 𝑡. In this model, the demand curve faced by strategic firms is
given by

𝑄𝑡(𝑃) = 𝑄𝐷
𝑡 −𝑄fr

𝑡 (𝑃)

where 𝑄𝐷
𝑡 denotes the inelastic demand during hour 𝑡 and 𝑄fr

𝑡 (𝑃) denotes the quantity
supplied by the competitive fringe firms at a price 𝑃. Let 𝑃𝑡(𝑄) denote the inverse demand
curve of strategic firms, so the profit function of downstream firm 𝑑 at hour 𝑡 is given by:

𝜋𝑑
𝑡 (𝑄𝑑𝑡 , 𝐶𝑑𝑡) = 𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)

heat rate. In this calculation, we assume that if there are multiple coal suppliers, the coal is blended across
suppliers without a specific order of use.
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with 𝑄−𝑑𝑡 representing the production of all other strategic firms except 𝑑. The annual
profit function can be obtained by aggregating hourly profits:

𝜋𝑑(𝑄𝑑 , 𝐶𝑑) =
∑
𝑡

𝑓𝑡𝜋
𝑑
𝑡 (𝑄𝑑𝑡 , 𝐶𝑑𝑡)

Here 𝑓𝑡 is the frequency of the hour type 𝑡; 𝑄𝑑 is a vector of quantities, 𝑄𝑑 = {𝑄𝑑𝑡}𝑛𝑡𝑡=1; and
𝐶𝑑 is the set of cost functions, 𝐶𝑑 = {𝐶𝑑𝑡}𝑛𝑡𝑡=1.

7.2.4 Upstream Profit

Each upstream firm 𝑢 has a set of buyers given by 𝐷𝑢 , where a quantity 𝑞𝑢𝑑 is traded
with each partner 𝑢 at a price 𝑤𝑢𝑑. The upstream firm’s profit function is simply the total
revenue obtained from these transactions minus the total cost of production:

𝜋𝑢(𝑤𝑢 , 𝑞𝑢) =
∑
𝑑∈𝐷𝑢

𝑤𝑢𝑑𝑞𝑢𝑑 − 𝐶𝑢

( ∑
𝑑∈𝐷𝑢

𝑞𝑢𝑑

)
Here, 𝑤𝑢 and 𝑞𝑢 represent the vector of all prices and quantities for firm 𝑢.

7.3 A Bargaining Model of Mining Firms and Power-Plant Owners

We specify a model of bargaining between mining and power firms that negotiate over a
linear price annualy. We adopt the sequential timing assumption introduced in Section
2, as it permits the equilibrium to exist for all 𝛽 values. Under this assumption, the
upstream firm chooses how much coal to supply in the monopsonistic bargaining and
the downstream firm how much coal to demand in the monopolistic bargaining after
observing the wholesale price. We also maintain the passive-belief assumption, so 𝑢 and
𝑑 condition on all other bargaining outcomes when negotiating over the wholesale price.

Empirical evidence supports our assumptions of annual contract durations and linear
price contracts. As shown in Table 2, the average contract duration is 1.42 years, making
annual negotiation a reasonable approximation of actual contract terms. Regarding linear
pricing, while our transaction data do not directly reveal contract types, we have access
to historical contract data from 1980 to 2000. Figure OA-2, constructed from this data,
reveals that the share of linear price contracts increased from 3% in 1979 to over 75% by
2000.31 Assuming this trend continued beyond 2000, it is likely that linear price contracts
represent the majority of contracts during our sample.

31Coal contracts can take several forms, including base price plus escalation, market-indexed pricing, cost-plus
contracts, and linear price contracts (Kozhevnikova and Lange, 2009).
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Our assumptions also allow us to abstract from the holdup problem, as analyzed in
the seminal paper by Joskow (1985). Since the 1970s and 1980s, when Joskow’s study was
conducted, coal markets have undergone significant transformations driven by technolog-
ical advancements and regulatory reforms. First, the introduction of scrubbers has made
coal more homogenous for power plants, which mitigates the coal specificity that led to
investment holdup. Second, environmental and railroad regulatory changes have reduced
coal specificity by incentivizing boiler upgrades and improving access to more coal mar-
kets (Ellerman et al., 2000).32 Overall, these developments have significantly reduced the
prevalence of long-term contracts, which were historically the primary mechanism for
mitigating investment holdup.

In what follows, we first define the firms’ individual optimization problem under mo-
nopolistic and monopsonistic bargaining in Stage 2, and then we introduce the bargaining
problem of Stage 1.

Firms’ Problem in Monopolistic Bargaining

Under monopolistic bargaining, the downstream firm 𝑑 takes input prices as given, which
affects its cost curve 𝐶𝑑𝑡 , and chooses the level of production every hour to maximize profit:

𝑄
mp
𝑑𝑡

(𝐶𝑑𝑡) = arg max
𝑄𝑑𝑡

[𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)] . (9)

Let 𝑞𝑚𝑝

𝑢𝑑𝑡
(𝐶𝑑𝑡 , 𝑤𝑢𝑑) be the factor demand from upstream firm 𝑢 to production of 𝑄mp

𝑑𝑡
(𝐶𝑑𝑡).

This factor demand comes from the electricity generation from coal units in producing
𝑄

mp
𝑑𝑡

(𝐶𝑑𝑡). Given this, we can write the annual factor demand of 𝑑 from 𝑢 as

𝑞
𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑) =

∑
𝑡

𝑓𝑡𝑞𝑢𝑑𝑡(𝐶𝑑𝑡).

For the mining firm, the passive-beliefs assumption means firm 𝑢 assumes that coal ship-
ments to all partners except 𝑑 are fixed and predetermined. Thus, in monopolistic bar-
gaining, 𝑢 supplies the quantity demanded by 𝑑 using production from its lowest-cost
available mines.33

32Due to the 1990 Clean Air Act Amendment, plants acquired new technologies that allowed them to boil lower-
sulfur-content coal, which made them more flexible in their coal-type burning requirements, as suggested
by Ellerman et al. (2000). Kacker (2014) finds that in the 1990 Clean Air Act Amendment Phase I, power
plants forced to switch technology were more likely to write shorter-term contracts and choose fixed-price
contracts than those not forced to switch. Moreover. the 1980 Railroad Reform reduced transportation costs,
favoring heterogeneous coal-type price reductions at the power-plant gate, including lower-sulfur coal.

33This assumption would be violated if mining firms recognized that selling to 𝑑 increases costs for all other
firms they supply. However, we believe that passive beliefs are a reasonable first-order approximation, since
upstream firms typically sell to many downstream firms.

34



Firms’ Problem in Monopsonistic Bargaining

Under monopsonistic bargaining, the upstream firm takes {𝑤𝑢𝑙}𝑙≠𝑑 and {𝑞𝑢𝑙}𝑙≠𝑑 as given
and decides how much to supply to firm 𝑑 with the following optimization problem:

𝑞ms
𝑢𝑑

(𝐶𝑢 , 𝑤𝑢𝑑) = arg max
𝑞𝑢𝑑

{
𝑤𝑢𝑑 𝑞𝑢𝑑 −

[
𝐶𝑢

(∑
𝑙≠𝑑

𝑞𝑢𝑙 + 𝑞𝑢𝑑

)
− 𝐶𝑢

(∑
𝑙≠𝑑

𝑞𝑢𝑙

)]}
.

The solution to this problem is 𝑞𝑢𝑑 = (𝐶′
𝑢)−1 (𝑤𝑢𝑑) −

∑
𝑙≠𝑑

𝑞𝑢𝑑, meaning that firm 𝑢 supplies

to firm 𝑑 up to a quantity such that its marginal cost equals the wholesale price 𝑤𝑢𝑑.
For the downstream firm, the quantity decision of 𝑢 does not directly determine its

production due to the multi-input nature of electricity generation, as in Extension 5.4.
Thus, firm 𝑑 solves the following problem:

𝑄𝑚𝑠
𝑑𝑡

(𝑞𝑢𝑑) = argmax
𝑄̃𝑑𝑡

𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶−𝑢
𝑑𝑡

(𝑄𝑑𝑡) s.t. 𝑄𝑑𝑡 = 𝑄̃𝑑𝑡 +𝑄𝑢𝑑𝑡(𝑞𝑢𝑑), (10)

where 𝑄𝑢𝑑𝑡(𝑞𝑚𝑠
𝑢𝑑

) is the electricity generation from 𝑞𝑚𝑠
𝑢𝑑

—that is, the quantity supplied from
𝑢—and 𝐶−𝑢

𝑑𝑡
(𝑄𝑑𝑡) is the cost function after taking out the generation capacity that is used

to generate 𝑄𝑢𝑑𝑡 . In other words, firm 𝑑 takes the electricity generation from coal supplied
by 𝑢 as given and maximizes its profit.

Gains From Trade

Next, we calculate the gains from trade for the upstream and downstream firms. The
annual profit of firm 𝑢, if we exclude partner 𝑑, is given by

𝜋𝑢
−𝑑(𝑤𝑢 , 𝑞𝑢) =

∑
𝑙∈D\{𝑑}

𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢
©­«

∑
𝑙∈D\{𝑑}

𝑞𝑢𝑙
ª®¬

Here, we assume that the upstream firm does not sell the quantity 𝑞𝑢𝑑 in the event of a
disagreement. With this, the gain from trade for firm 𝑢 with 𝑑 is given by:

GFT𝑢
𝑢𝑑

= 𝜋𝑢 − 𝜋𝑢
−𝑑 =

[∑
𝑙∈D

𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢(𝑄𝑢)
]
−


∑

𝑙∈D\{𝑑}
𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢(𝑄−𝑑)


= 𝑤𝑢𝑑𝑞𝑢𝑑 −

[
𝐶𝑢(𝑄−𝑑

𝑢 +𝑄𝑢𝑑) − 𝐶𝑢(𝑄−𝑑
𝑢 )

]
,

where 𝑄−𝑑
𝑢 denotes the total quantity that is sold to partners other than 𝑑.

For the downstream firm, a disagreement in bargaining primarily affects its cost func-

35



tion. We assume that in the event of a disagreement, firm 𝑑 turns to the spot market instead
of sourcing the coal from firm 𝑢. In the spot market, both price levels and volatility impact
firm profitability, as firms generally dislike price uncertainty (Jha, 2022).34 We denote 𝑑’s
cost function from disagreement with 𝑢 as 𝐶−𝑢

𝑑𝑡
(𝑄), which can be obtained by replacing

the wholesale price 𝑤𝑢𝑑 with the price in the spot market.35 Therefore, the profit function
in case of a disagreement is given by:

𝜋𝑑
−𝑢𝑡(𝑄𝑑𝑡) = 𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶−𝑢

𝑑𝑡
(𝑄𝑑𝑡)

Let 𝑄̄−𝑢
𝑑𝑡

be the solution to maximizing this profit. The gain from trade is given by

GFT𝑑
𝑢𝑑

=
∑
𝑡

𝑤𝑡

( [
𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑)

]
−

[
𝑃𝑡(𝑄−𝑑𝑡 + 𝑄̄−𝑢

𝑑𝑡
)𝑄̄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡
(𝑄̄−𝑢

𝑑𝑡
)
] )

With these objects, we can represent the monopsonistic bargaining problem as follows:

max
𝑤𝑢𝑑

{[
𝑤𝑢𝑑 𝑞

𝑚𝑠
𝑢𝑑

(𝑤𝑢𝑑) −
(
𝐶𝑢

(
𝑄−𝑑 + 𝑞𝑚𝑠

𝑢𝑑
(𝑤𝑢𝑑)

)
− 𝐶𝑢

(
𝑄−𝑑

) )]1−𝛽

×
[∑

𝑡 𝑤𝑡

( [
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄𝑚𝑠

𝑑𝑡

)
𝑄𝑚𝑠

𝑑𝑡
− 𝐶𝑑𝑡

(
𝑄𝑚𝑠

𝑑

) ]
−

[
𝑃𝑡

(
𝑄−𝑑𝑡 + 𝑄̄−𝑢∗

𝑑𝑡

)
𝑄̄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡

(
𝑄̄−𝑢

𝑑𝑡

) ] )]𝛽}
𝑄𝑚𝑠

𝑑𝑡
(𝑞𝑢𝑑) = argmax

𝑄̃𝑑𝑡

𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶−𝑢
𝑑𝑡

(𝑄𝑑𝑡) where 𝑄𝑑𝑡 = 𝑄̃𝑑𝑡 +𝑄𝑢𝑑𝑡

𝑞𝑚𝑠
𝑢𝑑

(𝐶𝑢 , 𝑤𝑢𝑑) = argmax
𝑞𝑢𝑑

∑
𝑤𝑢𝑑𝑞𝑢𝑑 − 𝐶𝑢 (

∑
𝑞𝑢𝑑)

Similarly, we can write the monopolistic bargaining problem as follows:

max
𝑤𝑢𝑑

{[
𝑤𝑢𝑑 𝑞

𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑) −

(
𝐶𝑢

(
𝑄−𝑑 + 𝑞

𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑)

)
− 𝐶𝑢

(
𝑄−𝑑

) )]1−𝛽

×
[∑

𝑡 𝑤𝑡

( [
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄

𝑚𝑝

𝑑𝑡

)
𝑄

𝑚𝑝

𝑑𝑡
− 𝐶𝑑𝑡

(
𝑄

𝑚𝑝

𝑑

) ]
−

[
𝑃𝑡

(
𝑄−𝑑𝑡 + 𝑄̄−𝑢

𝑑𝑡

)
𝑄̄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡

(
𝑄̄−𝑢

𝑑𝑡

) ] )]𝛽}
𝑄

mp
𝑑𝑡

(𝐶𝑑𝑡), 𝑞𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑) = arg max

𝑄𝑑𝑡

, 𝑞𝑢𝑑 [𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)]

The solutions (𝑤𝑑𝑡 , 𝑄𝑑𝑡) to these problems characterize the equilibrium in monopsonistic
and monopolistic bargaining, respectively.

34As Jha (2022) notes, “plant managers may pay a premium for contract coal because delivery is guaranteed.
In contrast, plant managers have no assurance that they will find a spot supplier to purchase coal from every
month.”

35See Appendix G.5. for the implementation with disagreement payoffs.
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Figure 7: Distribution of Cost and Demand Elasticity

(a) Upstream Cost Estimates (b) Dowstream Demand Estimates

Notes: Panel (a) presents kernel density estimates of the distribution of the elasticity of marginal cost (the elasticity
of 𝜕(𝑐(𝑞)𝑞)/𝜕𝑞)). Panel (b) presents kernel density estimates of the distribution of the elasticity of demand (the
elasticity of 𝑝−1(𝑞)). Each observation corresponds to a mining firm-year in Panel (a) and an hour-type power firm
in Panel (b).

7.4 Estimation and Results

We solve the model for each contracting pair (mining and power firms) each year. We first
estimate the primitives, the residual electricity demand of the downstream firm, and the
cost of the upstream firm to form payoff functions. Then, we solve for equilibrium quan-
tities and wholesale prices (𝑝, 𝑤) under both monopsonistic and monopolistic bargaining
for each 𝛽 ∈ (0, 1). We estimate 𝛽 as the value of the bargaining parameter that rationalizes
the observed quantity under each vertical conduct and then apply our conduct selection
rule. See Appendix G.7 for the detailed implementation of our estimation algorithm.

Cost and Demand Elasticity Estimates

We present the distribution of marginal cost elasticity estimates for each mine-year in
Figure 7(a). These estimates show a notable concentration at or near one, which indicates
approximately constant marginal cost curves, while the rest of the distribution ranges from
1.5 to 3.5. This heterogeneity in the mining cost elasticity comes primarily from the mine’s
location: mines in Wyoming and Montana are predominantly surface mines with large
capacities and relatively flat marginal cost curves, while mines in Appalachia are mainly
underground mines with smaller capacities and steeper marginal cost curves.

We present the distribution of residual demand elasticity estimates in Figure 7(b), with
each observation corresponding to an hour-firm pair.36 The elasticity estimates exhibit a

36Since demand is estimated nonparametrically from the cost curves of both fringe and strategic firms, we
report the elasticities at the observed output levels for each hour.
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Figure 8: Bargaining Model Estimates

(a) Buyer Power Estimates (b) Comparison to Efficient Bargaining
Notes: Panel (a) shows kernel density of buyer power estimates (𝛽) across each buyer-seller pair, with the red
dashed line marking the average of the efficient level of buyer power 𝛽∗. Panel (b) compares the logarithm
of observed coal-transaction quantities (𝑞), in log MMBtu, to the logarithm of the joint-profit-maximizing coal
transaction (𝑞∗) across each buyer-seller pair. The red dashed line represents the 45-degree line.

wide range, though most are concentrated between 1 and 4. This variation in elasticities
primarily reflects the shape of the fringe firms’ supply curve, which varies depending
on the time of day and season. The average of our elasticity estimates aligns with Puller
(2007), who reports a residual demand elasticity of 2.33 in the California electricity market.

These cost and demand estimates are the key inputs to understanding whether buyer or
seller power is likely to be a source of inefficiency. As shown in Section 3, the efficient level
of buyer power that maximizes total output decreases with the upstream cost elasticity
and with the downstream demand elasticity. The presence of many mining firms with
close to constant returns to scale suggests that seller power is likely to be the source of
distortion in many bargaining pairs.

Bargaining Parameter Estimates

We estimate a separate bargaining parameter for each buyer-seller-year and report the
distribution of these estimates in Figure 8(a). The distribution is heavily skewed toward
one, meaning power plants have relatively more bargaining power than the mining firms
they buy from. The average efficient level of buyer power, indicated by the dashed red
line, lies around 0.9. While the estimated bargaining parameters are below the efficient
level, they are not significantly far from it, suggesting the scope of distortion in this market
is relatively small.

Next, we apply our conduct selection criteria of nonnegative markup and markdown.
Theorem 1 in Section 4 shows that vertical conduct is monopsonistic if the bargaining
weight exceeds 𝛽∗ and monopolistic otherwise. Applying this rule to the bargaining weight
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estimates in Figure 8(a), we find that two bargaining relationships exhibit monopsonistic
conduct, while the remaining relationships are monopolistic. This suggests that most
output distortion arises from seller power rather than buyer power, resulting in double
marginalization.

Finally, we test whether our conduct selection criteria are supported by the data by
leveraging its falsifiable implication developed in Section 4: observed output quantities
should be lower than the joint-profit-maximizing output. Figure 8(b) compares the ob-
served quantities with the efficient-bargaining quantities calculated from the model for
each trading relationship in the data. With few exceptions, observed output is consistently
below the joint-profit-maximizing levels, providing empirical support for our conduct
selection criterion.

7.5 Decomposing Welfare Effects Into Monopolistic and Monopsonistic Conduct

In this section, we quantify total welfare loss and decompose it into components at-
tributable to monopsony power and monopoly power. Since short-run electricity demand
is inelastic, welfare effects in electricity markets arise primarily from allocative inefficiency
rather than lost output (Borenstein et al., 2002). Specifically, monopoly and monopsony
distortions lead strategic firms to produce less than they would in the absence of verti-
cal distortions, shifting production to higher-cost fringe firms. Accordingly, we measure
welfare loss as the additional output produced by higher-cost fringe firms due to double
marginalization or monopsony power.

To decompose the total welfare effects into monopsony and monopoly sources, for every
trading relationship in the data, we calculate the differences between the observed and
output-maximizing output levels in Figure 8(b). We then aggregate these differences by
multiplying them by market prices separately across trading pairs for both the monopolistic
and monopsonistic conduct cases. This gives us both the total underproduction of strategic
producers compared to a competitive benchmark and a decomposition of this amount into
a monopsonistic and monopolistic distortion.

The results are summarized in Table 3. We estimate the total misallocated quantity
in the ERCOT market to be 5.11% of total fuel-generation expenditures. While this figure
is relatively small, it is not surprising given that the estimated bargaining weights are
close to the efficient levels. In terms of sources, 82.71% of the welfare loss is attributed to
double marginalization resulting from the monopoly power of coal mining firms, while
the remaining portion is due to the monopsony power of power companies. In this market,
an increase in buyer power would be countervailing, whereas an increase in seller power
would be further distortionary.
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Table 3: Decomposing Welfare Losses From Market Power

Misallocation % of Coal Expenditure
Total misallocated output 5.11 %
Decomposition: % of Total Loss
Due to monopsony 17.29%
Due to monopoly 82.71%

Notes: This table decomposes the total misallocation due to market power (additional
output produced by fringe firms compared to a competitive wholesale coal market) into its
components: losses due to monopsony and monopoly power.

8 Concluding Remarks

Vertical relationships between buyers and sellers are studied in a variety of settings to
quantify market distortions, from healthcare markets to labor unions, under monop-
sony/oligopsony and double-marginalization settings. In this paper, we provide a unified
framework that nests both monopolistic and monopsonistic vertical conduct that are com-
monly used in the literature. We show that with increasing upstream marginal costs and
decreasing downstream marginal revenues, both conduct types lead to a solution with
distinct welfare implications. We demonstrate how to determine which type of vertical
conduct emerges based on the relative bargaining positions of buyers and sellers and the
underlying primitives of cost and demand functions.

We illustrate our model using various empirical settings that feature increasing up-
stream marginal costs, including labor unions, farmer cooperatives, and suppliers with
decreasing returns to scale. In our main empirical application, we use the model to quantify
the sources of deadweight loss in the coal procurement of power plants in Texas. We find
that inefficiencies mostly stem from double marginalization due to coal-mine monopoly
power rather than from the monopsony power of power plant companies.

Insights from this paper inform antitrust policy. In horizontal merger analysis, we
characterize the conditions under which changes in concentration in upstream and down-
stream markets are distortionary or countervailing. In monopolistic conduct, increased
buyer power counteracts double marginalization and increases welfare, while in monop-
sonistic conduct, increased buyer power enhances monopsony distortions and reduces
welfare. For vertical mergers, our framework provides a systematic way to evaluate effi-
ciency claims about eliminating double marginalization by quantifying the gap between
current and efficient levels of buyer power.
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A Proofs for Results Under the Simultaneous Model

A.1 Summary of First-Order Conditions

Under the simultaneous bargaining models, the maximization problems are given by:

max
𝑞

𝑝(𝑞)𝑞 − 𝑤𝑞 (Downstream’s problem)

max
𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 (Upstream’s problem)

max
𝑤

[(𝑝(𝑞)𝑞 − 𝑤𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞)1−𝛽] (Bargaining problem)

max
𝑤,𝑞

[(𝑝(𝑞)𝑞 − 𝑤𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞)1−𝛽] (Joint profit maximization)

(OA.1)

These objective functions correspond to the following FOCs, for which we provide the
proofs in Section A.2:



𝑤 = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) (D-FOC)

𝑤 = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) (U-FOC)

𝑤 = (1 − 𝛽) 𝑝(𝑞) + 𝛽 𝑐(𝑞) (B-FOC)

𝑞[𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0 (J-FOC)

(OA.2)

Based on these FOCs, the equilibrium quantities are given by:
(1 − 𝛽)[𝑐(𝑞) − 𝑝(𝑞)] − 𝑝′(𝑞)𝑞 = 0 (MP Bargaining)

(1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞 = 0 (MS Bargaining)

𝑞 [𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0 (Joint Max.)

A.2 Derivations of FOCs Under Simultaneous Bargaining

D-FOC and U-FOC are straightforward and therefore omitted.

A.2.1 B-FOC

Take the natural logarithm of the objective function:

L(𝑤) ≡ 𝛽 ln(𝑝(𝑞)𝑞 − 𝑤𝑞) + (1 − 𝛽) ln(𝑤𝑞 − 𝑐(𝑞)𝑞) (OA.3)
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Taking the derivative of L(𝑤) with respect to 𝑤 and setting it to zero gives

𝛽 · −𝑞
𝑝(𝑞)𝑞 − 𝑤𝑞

+ (1 − 𝛽) · 𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 = 0.

Solving for 𝑤 gives 𝑤 = (1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞).

A.2.2 J-FOC

Take the derivative of L(𝑤) from Equation (OA.3) with respect to 𝑞:

𝛽 ·
𝑝′(𝑞)𝑞 + 𝑝(𝑞) − 𝑤

𝑝(𝑞)𝑞 − 𝑤𝑞
+ (1 − 𝛽) ·

𝑤 − 𝑐′(𝑞)𝑞 − 𝑐(𝑞)
𝑤𝑞 − 𝑐(𝑞)𝑞 = 0.

Substitute 𝑤 = (1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞) from (B-FOC) above:

𝛽 · 𝑝
′(𝑞)𝑞 + 𝑝(𝑞) − [(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]
𝑝(𝑞)𝑞 − [(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]𝑞 + (1 − 𝛽) · [(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)] − 𝑐′(𝑞)𝑞 − 𝑐(𝑞)

[(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]𝑞 − 𝑐(𝑞)𝑞 = 0

The numerator and denominator for both terms above simplify to:

𝑝′(𝑞)𝑞 + 𝛽[𝑝(𝑞) − 𝑐(𝑞)]
𝑞[𝑝(𝑞) − 𝑐(𝑞)] + (1 − 𝛽)(𝑝(𝑞) − 𝑐(𝑞)) − 𝑐′(𝑞)𝑞

𝑞(𝑝(𝑞) − 𝑐(𝑞)) = 0.

This expression results in the joint profit maximization FOC (J-FOC):

𝑞[𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0.

A.3 Proof of Proposition 1 for the Simultaneous Model

Proposition 1. If the upstream marginal cost is constant, 𝑚𝑐′(𝑞) = 0, the monopsonistic
bargaining problem does not have an interior solution. If the downstream marginal
revenue is constant, 𝑚𝑟′(𝑞) = 0, the monopolistic bargaining problem does not have an
interior solution. In all other cases, both the monopolistic and monopsonistic bargaining
problems have an interior solution within the ranges of 𝛽 specified in Appendix D.2.

Proof. Note that the second-order conditions for either bargaining model do not hold under
the assumptions of this proposition since the profit function of upstream is unbounded
for 𝑤 > 𝑐 when marginal cost is constant, and the profit of downstream is unbounded
for 𝑝 < 𝑤 when marginal revenue is constant. As a result, the first-order conditions
cannot be relied on to find an equilibrium pair (𝑤∗, 𝑞∗), and we must consider each of the
maximization programs in cases. We will provide the proof separately for monopsonistic
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and monopolistic bargaining.

Monopsonistic Bargaining:

The equilibrium (𝑤∗, 𝑞∗) maximizes the objective functions below in the monopsonistic
bargaining.


max

𝑞
𝜋𝑢(𝑤∗, 𝑞) (𝑈)

max
𝑤

𝜋𝑏(𝑤, 𝑞∗, 𝛽) (𝐵)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0, 𝜋𝑑(𝑤, 𝑞) ≥ 0

where 𝜋𝑏(𝑤, 𝑞, 𝛽) ≡ (𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽. For any 𝛽, (𝑤∗, 𝑞∗) is an equilibrium if there is
no other 𝑤 such that 𝜋𝑑(𝑤, 𝑞∗) > 𝜋𝑑(𝑤∗, 𝑞∗) and there is no other 𝑞 such that 𝜋𝑏(𝑤∗, 𝑞, 𝛽) >
𝜋𝑏(𝑤∗, 𝑞∗, 𝛽). Our result follows from analyzing the equilibrium under different 𝛽 values.

Case I: 𝛽 ∈ (0, 1)

We will show that under constant upstream marginal cost, the equilibrium for 𝛽 ∈ (0, 1) is
𝑤∗ = 𝑐 and 𝑞∗ = 𝑝−1(𝑐). The profit functions are given by

𝜋𝑑(𝑤, 𝑞) =
(
𝑝(𝑞) − 𝑤

)
𝑞 and 𝜋𝑢(𝑤, 𝑞) =

(
𝑤 − 𝑐)𝑞.

Observe that at (𝑤∗, 𝑞∗) we have that 𝜋𝑑(𝑤∗, 𝑞∗) = 0 and 𝜋𝑏(𝑤∗, 𝑞∗, 𝛽) = 0.
First we will verify that (𝑐, 𝑝−1(𝑐)) is indeed an equilibrium. Consider a deviation of 𝑞̃ from
𝑞∗. Observe that for any such deviation, the 𝜋𝑢 = 0, so there is no profitable deviation.

Now, consider a deviation of 𝑤̃ > 𝑐 from 𝑤∗. Observe that since 𝑝(𝑞∗) = 𝑤, such a
deviation does not satisfy the participation constraint because𝜋𝑑(𝑤̃, 𝑞∗) = (𝑝(𝑞∗)−𝑤̃

)
𝑞 < 0.

Next, consider a deviation of 𝑤̃ < 𝑐 from𝑤∗. Observe that since𝑤∗ = 𝑐, such a deviation
does not satisfy the participation constraint because 𝜋𝑢(𝑤̃, 𝑞∗) = (𝑤̃− 𝑐

)
𝑞∗ < 0. This proves

that 𝑤∗ = 𝑐 and 𝑞∗ = 𝑝−1(𝑐) is indeed an equilibrium.
We now show that there is no other equilibrium by considering cases separately.
(i) Suppose 𝑤̄ = 𝑐 and 𝑞̄ < 𝑞∗ is an equilibrium. Consider a deviation from this

equilibrium such that 𝑤̃ = 𝑐 + 𝜖, 𝜖 < 𝑝(𝑞̄) − 𝑝(𝑞∗). Noting that 𝑤̃ = 𝑝∗ + 𝜖, the profit
functions are given by

𝜋𝑢(𝑤̃, 𝑞̄) = (𝑐 + 𝜖 − 𝑐
)
𝑞̄∗ > 0 and 𝜋𝑑(𝑤̃, 𝑞̄) = (𝑝(𝑞̄) − (𝑝(𝑞∗) + 𝜖)

)
𝑞̄ > 0.

Therefore, 𝜋𝑏(𝑤̃, 𝑞̄) > 𝜋𝑏(𝑤̄, 𝑞̄), which means that there is a profitable deviation such that
(𝑤̄ = 𝑐, 𝑞̄ < 𝑞∗) cannot be an equilibrium. We can also eliminate (𝑤̄ = 𝑐, 𝑞̄ > 𝑞∗) as a
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potential equilibrium since it does not satisfy the participation constraint of upstream.
(ii) Suppose (𝑤̄ > 𝑐, 𝑞̄) is an equilibrium, where 𝑞̄ ∈ (0, 𝑝−1(𝑤̄)). In this case, 𝑞̃ = 𝑝−1(𝑤̄)

is a profitable deviation for 𝑈

𝜋𝑢(𝑤̃, 𝑞̃) = (𝑤̃ − 𝑐)𝑞̃ > (𝑤̃ − 𝑐)𝑞̄ = 𝜋𝑢(𝑤̃, 𝑞̄)

because 𝑞̄ > 𝑞̃ and𝜋𝑑(𝑤̃, 𝑞̄) = 0 still satisfies the participation constraint of the downstream.
(iii) Now suppose that (𝑤̄ > 𝑐, 𝑝−1(𝑤̄)) is an equilibrium. Note that 𝜋𝑑 = 𝜋𝑏 = 0 in this

case. Consider a deviation 𝑤̃ = 𝑤̄ − 𝜖 where 𝜖 < 𝑤̄ − 𝑐. We can write the profit functions
as

𝜋𝑢(𝑤̃, 𝑞̄) = (𝑤̃ − 𝑐
)
𝑞̃ > 0,

𝜋𝑑(𝑤̃, 𝑞̄) = (𝑝(𝑞̄) − (𝑤̄ − 𝜖))𝑞̄ = (𝑤̄ − (𝑤̄ − 𝜖))𝑞̄ > 0.

This deviation is profitable because 𝜋𝑏 > 0. Therefore, (𝑤̄ > 𝑐, 𝑞̄ = 𝑝−1(𝑤̄)) cannot be an
equilibrium.

(iv) We can directly eliminate any case (𝑤̃ < 𝑐, 𝑞̃) because it does not satisfy the par-
ticipation constraint of upstream, and we can also eliminate any case (𝑤̃ > 𝑐, 𝑞̃ > 𝑝−1(𝑤̃))
because it does not satisfy the participation constraint of downstream. This concludes the
proof.

Case II: 𝛽 = 1

We will show that if 𝛽 = 1, there is a continuum of equilibria given by 𝑤∗ = 𝑐 and
𝑞∗ ∈ [0, 𝑝−1(𝑐)]. The equilibrium (𝑤∗, 𝑞∗) should solve the following problems:


max

𝑞
𝜋𝑢(𝑤∗, 𝑞) (𝑈)

max
𝑤

𝜋𝑑(𝑤, 𝑞∗) (𝐷)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0, 𝜋𝑑(𝑤, 𝑞) ≥ 0.

First we verify that 𝑤∗ = 𝑐 and 𝑞∗ ∈ [0, 𝑝−1(𝑐)] is indeed an equilibrium. Consider a
deviation of 𝑤̃ > 𝑐 from 𝑤∗. This will reduce the downstream profit for any 𝑞

𝜋𝑑(𝑤̃, 𝑞) = (𝑝(𝑞) − 𝑤̄)𝑞 > (𝑝(𝑞) − 𝑤∗)𝑞 = 𝜋𝑑(𝑤̃, 𝑞)

Thus, there is no profitable deviation from 𝑤∗ = 𝑐 for any 𝑞. Similarly, when 𝑤 = 𝑐, the
profit function of 𝑈 is always zero regardless of 𝑞, so there is a profitable deviation from
𝑞∗, and any 𝑞 that satisfies the participation constraint is an equilibrium. Therefore, 𝑤∗ = 𝑐
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and 𝑞∗ ∈ [0, 𝑝−1(𝑐)] is an equilibrium.
Next, we will show that no other equilibria exist. Suppose (𝑤̄ > 𝑐, 𝑞̄) is an equilibrium

for any 𝑞̄. We cannot have 𝑞̄ < 𝑝−1(𝑤̄), because then 𝑞̃ = 𝑝−1(𝑤̄)will be a profitable deviation
for upstream. Similarly, we cannot have 𝑞̄ > 𝑝−1(𝑤̄) because that would violate the
participation constraint of downstream. Therefore, we only consider (𝑤̄ > 𝑐, 𝑞̄ = 𝑝−1(𝑤̄))
as a potential equilibrium.

Note that at (𝑤̄ > 𝑐, 𝑞 = 𝑝−1(𝑤̄)), we have 𝜋𝑑 = 0. Now, consider a deviation 𝑤̃ = 𝑤̄ − 𝜖

such that 𝜖 < 𝑤̄ − 𝑐. The downstream profit, in this case, is positive:

𝜋𝑑(𝑤̃, 𝑞̄) = (𝑝(𝑞̄) − 𝑤̃)𝑞̃ = (𝑤̄ − 𝑤̃)𝑞̄ > 0.

Thus, there is a profitable deviation, and (𝑤̄ > 𝑐, 𝑞 = 𝑝−1(𝑤̄)) cannot be an equilibrium. Fi-
nally, as an equilibrium candidate, 𝑤̃ < 𝑐 violates the participation constraint of upstream,
so it cannot be an equilibrium.

Case III: 𝛽 = 0

We will show that if 𝛽 = 0, there is a continuum of equilibria given by 𝛽 = 0, which is
(𝑤∗ > 𝑐, 𝑝−1(𝑤∗)). The equilibrium (𝑤∗, 𝑞∗) should solve the following problems:


max

𝑞
𝜋𝑢(𝑤∗, 𝑞) (𝑈)

max
𝑤

𝜋𝑢(𝑤, 𝑞∗) (𝐷)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0 𝜋𝑑(𝑤, 𝑞) ≥ 0

For any 𝑞, 𝐷 is maximized at 𝑤 = 𝑝(𝑞) subject to the participation constraint. Similarly for
any 𝑤, (U) is maximized at 𝑞 such that 𝑤 = 𝑝(𝑞) to make participation constraint binding.
Therefore, 𝑤 is indeterminate in this case, so any 𝑤 ≥ 𝑐 with 𝑞 = 𝑝−1(𝑤) is an equilibrium.

Monopolistic Bargaining:

When marginal revenue is constant, 𝑝(𝑞) = 𝑝, the equilibrium for monopolistic bargaining
for different 𝛽 values is given by


(𝑤∗ = 𝑝, 𝑞∗ = 𝑐−1(𝑝)) if 𝛽 ∈ (0, 1)
(𝑤∗ = 𝑝, 𝑞∗ ∈ [0, 𝑐−1(𝑝)]) if 𝛽 = 0

(𝑤∗ ≤ 𝑝, 𝑐−1(𝑤∗)) if 𝛽 = 1.

We omit the proofs for these results as they follow in a very similar manner to the proof for
the cases above for the monopsonistic bargaining model. Note that for all 𝛽 values in both
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monopsonistic and monopolistic bargaining, either the downstream profit or upstream
profits are zero. This proves that no interior equilibrium exists.

What’s left to show is that if 𝑚𝑐′(𝑞) > 0, and 𝑚𝑟′(𝑞) < 0, equilibrium exists for an
interior solution within the 𝛽 ranges specified in the proposition in both monopsonistic
and monopolistic bargaining. The existence of an equilibrium under monopsonistic and
monopolistic bargaining follows from Lemmas OA-1 and OA-2, respectively. □

A.4 Proof of Lemma 1

Lemma 1. If Property 1 holds, the equilibrium quantity 𝑞𝑚𝑠 is decreasing and the buyer
markdown Δ𝑑 is increasing with 𝛽 under simultaneous monopsonistic bargaining model,
that is 𝑑𝑞𝑚𝑠/𝑑𝛽 < 0 and 𝑑Δ𝑑/𝑑𝑞𝑚𝑠 > 0.

Proof. This result follows from an application of the Implicit Function Theorem. Note
the first-order condition for 𝑈 in the monopsonistic bargaining problem shown in A.2.
Substituting 𝑤 from (U-FOC) into (B-FOC), we have

𝑐′(𝑞)𝑞 = (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)].

Put 𝐹(𝑞, 𝛽) ≡ (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞, and observe that 𝐹(𝑞, 𝛽) = 0. As assumed in
Section 2, we consider an interval (0, 𝑞̄) such that 𝑝(𝑞) > 𝑐(𝑞) for all 𝑞 ∈ (0, 𝑞̄). Hence,

𝜕𝐹(𝑞, 𝛽)
𝜕𝛽

= 𝑐(𝑞) − 𝑝(𝑞) < 0

We verify that 𝜕𝐹/𝜕𝑞 < 0. Indeed, from our assumption of strict increasing differences
combined with the model in Section 3, we have

𝜕𝐹(𝑞, 𝛽)
𝜕𝑞

= (1 − 𝛽) [𝑝′(𝑞) − 𝑐′(𝑞)]︸           ︷︷           ︸
≤0

− [𝑐′′(𝑞)𝑞 + 𝑐′(𝑞)]︸             ︷︷             ︸
>0

< 0

By the Implicit Function Theorem,

𝑑𝑞

𝑑𝛽
= −𝜕𝐹/𝜕𝛽

𝜕𝐹/𝜕𝑞 < 0

which concludes the proof that 𝑑𝑞𝑚𝑠

𝑑𝛽 < 0.
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Next, consider the markdownΔ𝑑(𝑞) = 1−𝑤/𝑚𝑟(𝑞). Differentiating with respect to 𝛽 yields:

𝑑

𝑑𝛽
Δ𝑑(𝑞) = −

𝑑𝑤

𝑑𝛽
𝑚𝑟(𝑞) − 𝑤

𝑑
(
𝑚𝑟(𝑞)

)
𝑑𝛽

(𝑚𝑟′(𝑞))2 = −

𝑑𝑞

𝑑𝛽

(
𝑑𝑞

𝑑𝑤

)−1
𝑚𝑟(𝑞) − 𝑤

𝑑
(
𝑚𝑟(𝑞)

)
𝑑𝑞

𝑑𝑞

𝑑𝛽

(𝑚𝑟′(𝑞))2 .

Note that 𝑚𝑟′(𝑞) = (𝑝′′(𝑞)𝑞 + 2𝑝′(𝑞)) < 0 by assumption. We already showed that 𝑑𝑞

𝑑𝛽 < 0

and 𝑑𝑞

𝑑𝑤
> 0 from Lemma 1. Therefore, 𝑑

𝑑𝛽Δ
𝑑(𝑞) is positive and markdown is increasing

with 𝛽. □

A.5 Proof of Lemma 2

Lemma 2. If Property 2 holds, the equilibrium quantity 𝑞𝑚𝑝 and the upstream markup 𝜇𝑢

under simultaneous monopolistic bargaining is increasing with 𝛽, that is 𝑑𝑞𝑚𝑝/𝑑𝛽 > 0 and
𝑑𝜇𝑢/𝑑𝛽 > 0.

Proof. This result follows from an application of the Implicit Function Theorem. Note
the first-order condition for 𝐷 in the monopolistic bargaining problem shown in A.2.
Substituting 𝑤 from (D-FOC) into (B-FOC), we have

𝑝′(𝑞)𝑞 = 𝛽[𝑐(𝑞) − 𝑝(𝑞)].

Put 𝐹(𝑞, 𝛽) ≡ 𝑝′(𝑞)𝑞 − 𝛽[𝑐(𝑞) − 𝑝(𝑞)], and observe that 𝐹(𝑞, 𝛽) = 0. As assumed in Section
2.1, we consider an interval (0, 𝑞̄) such that 𝑝(𝑞) > 𝑐(𝑞) for all 𝑞 ∈ (0, 𝑞̄). Hence,

𝜕𝐹(𝑞, 𝛽)
𝜕𝛽

= 𝑝(𝑞) − 𝑐(𝑞) > 0.

We verify that 𝜕𝐹/𝜕𝑞 < 0. Indeed, from our assumption of strict decreasing differences
combined with the model in Section 2.1, we have

𝜕𝐹(𝑞, 𝛽)
𝜕𝑞

= 𝑝′′(𝑞)𝑞 + 𝑝′(𝑞)︸           ︷︷           ︸
<0

+𝛽 [𝑝′(𝑞) − 𝑐′(𝑞)]︸           ︷︷           ︸
≤0

< 0.

By the Implicit Function Theorem,

𝑑𝑞

𝑑𝛽
= −

𝜕𝐹/𝜕𝛽
𝜕𝐹/𝜕𝑞 > 0,

which concludes the proof that 𝑑𝑞𝑚𝑝

𝑑𝛽 > 0.
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Next, consider upstream markup as 𝜇𝑢(𝑞) = 𝑤/𝑚𝑐(𝑞) − 1. Differentiating with respect to
𝛽 yields:

𝑑

𝑑𝛽
𝜇𝑢(𝑞) =

𝑑𝑤

𝑑𝛽
𝑚𝑐(𝑞) − 𝑤

𝑑
(
𝑚𝑐(𝑞)

)
𝑑𝛽

(𝑑(𝑚𝑐(𝑞))/𝑑𝛽)2 = −

𝑑𝑞

𝑑𝛽

(
𝑑𝑞

𝑑𝑤

)−1
𝑚𝑐(𝑞) − 𝑤

𝑑
(
𝑚𝑐(𝑞)

)
𝑑𝑞

𝑑𝑞

𝑑𝛽

(𝑑(𝑚𝑐(𝑞))/𝑑𝛽)2

𝑚𝑐′ = (𝑐′′(𝑞)𝑞 + 2𝑐′(𝑞)) < 0 by assumption. We already showed that 𝑑𝑞

𝑑𝛽 < 0 and 𝑑𝑞

𝑑𝑤
> 0.

Therefore, 𝑑
𝑑𝛽𝜇

𝑠(𝑞) is positive, and markdown increases with 𝛽. □

A.6 Proof of Proposition 2 for the Simultaneous Model

Proposition 2. There exists a bargaining parameter 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) ∈ (0, 1) at which the

monopsonistic bargaining model, the monopolistic bargaining model, and the efficient-
bargaining models imply an identical equilibrium output in both simultaneous and se-
quential models. We denote 𝛽∗ as the "efficient level of buyer power."

Proof. We proceed by showing that the joint-profit-maximizing quantity 𝑞∗ is the optimal
output under both monopolistic and monopsonistic bargaining when buyer power is 𝛽∗.

From (J-FOC) as described in Section A.2, we know that 𝑞∗ uniquely satisfies

𝑞∗[𝑝′(𝑞∗) − 𝑐′(𝑞∗)] + [𝑝(𝑞∗) − 𝑐(𝑞∗)] = 0.

Rewriting this gives the equation:

𝑝(𝑞∗) − 𝑐(𝑞∗) = −𝑞∗[𝑝′(𝑞∗) − 𝑐′(𝑞∗)]. (OA.4)

First, consider monopolistic bargaining. The equilibrium output in the monopoly
model satisfies

𝑝′(𝑞𝑚𝑝)𝑞𝑚𝑝 = 𝛽[𝑝(𝑞𝑚𝑝) − 𝑐(𝑞𝑚𝑝)],

and solving for 𝛽 yields

𝛽𝑚𝑝 = − 𝑞𝑚𝑝 · 𝑝′(𝑞𝑚𝑝)
𝑝(𝑞𝑚𝑝) − 𝑐(𝑞𝑚𝑝) .

OA - 10



When 𝛽𝑚𝑝 = 𝛽∗, we have

−𝑝′(𝑞∗)
𝑐′(𝑞∗) − 𝑝′(𝑞∗) = −

𝑞𝑚𝑝 · 𝑝′(𝑞𝑚𝑝)
𝑝(𝑞𝑚𝑝) − 𝑐(𝑞𝑚𝑝) .

This equation is satisfied for 𝑞𝑚𝑝 = 𝑞∗ which can be seen by substituting Equation (OA.4)
into the denominator of the righthand side above:

−𝑝′(𝑞∗)
𝑐′(𝑞∗) − 𝑝′(𝑞∗) = −

𝑞𝑚𝑝 · 𝑝′(𝑞𝑚𝑝)
−[𝑝′(𝑞𝑚𝑝) − 𝑐′(𝑞𝑚𝑝)]𝑞𝑚𝑝

=
−𝑝′(𝑞𝑚𝑝)

𝑐′(𝑞𝑚𝑝) − 𝑝′(𝑞𝑚𝑝) .

Now, consider the monopsonistic problem. The equilibrium output in the monopsony
model satisfies

𝑐′(𝑞𝑚𝑠)𝑞𝑚𝑠 = (1 − 𝛽)[𝑝(𝑞𝑚𝑠) − 𝑐(𝑞𝑚𝑠)],

and solving for 𝛽 yields

𝛽𝑚𝑠 = 1 −
𝑐′(𝑞𝑚𝑠)𝑞𝑚𝑠

𝑝(𝑞𝑚𝑠) − 𝑐(𝑞𝑚𝑠) .

As above, we set 𝛽𝑚𝑠 = 𝛽∗, which gives the relationship

−𝑝′(𝑞∗)
𝑐′(𝑞∗) − 𝑝′(𝑞∗) = 1 −

𝑐′(𝑞𝑚𝑠)𝑞𝑚𝑠

𝑝(𝑞𝑚𝑠) − 𝑐(𝑞𝑚𝑠) .

This relation is satisfied when 𝑞𝑚𝑠 = 𝑞∗, which can be seen by substituting Equation (OA.4)
into the denominator in the right-hand side of the relation above:

−𝑝′(𝑞∗)
𝑐′(𝑞∗) − 𝑝′(𝑞∗) = 1 − 𝑐′(𝑞𝑚𝑠)𝑞𝑚𝑠

−[𝑝(𝑞𝑚𝑠) − 𝑐(𝑞𝑚𝑠)]𝑞𝑚𝑠

=
−𝑝′(𝑞𝑚𝑠)

𝑐′(𝑞𝑚𝑠) − 𝑝′(𝑞𝑚𝑠) .

We conclude then that under buyer power 𝛽∗, the efficient output 𝑞∗ is optimal under all
bargaining regimes. □
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B Proofs for Results Under the Sequential Model

B.1 Summary of First-Order Conditions

Under the sequential bargaining models, the maximization problems are given by:

max
𝑞𝑑

𝑝(𝑞𝑑) 𝑞𝑑 − 𝑤 𝑞𝑑 (Downstream’s problem)

max
𝑞𝑢

𝑤 𝑞𝑢 − 𝑐(𝑞𝑢) 𝑞𝑢 (Upstream’s problem)

max
𝑤

[(
𝑝
(
𝑞𝑑(𝑤)

)
𝑞𝑑(𝑤) − 𝑤 𝑞𝑑(𝑤)

)𝛽 (
𝑤 𝑞𝑑(𝑤) − 𝑐

(
𝑞𝑑(𝑤)

)
𝑞𝑑(𝑤)

)1−𝛽
]

(MP bargaining problem)

max
𝑤

[
(𝑝 (𝑞𝑢(𝑤)) 𝑞𝑢(𝑤) − 𝑤 𝑞𝑢(𝑤))𝛽 (𝑤 𝑞𝑢(𝑤) − 𝑐 (𝑞𝑢(𝑤)) 𝑞𝑢(𝑤))1−𝛽

]
(MS bargaining problem)

The corresponding first-order conditions, shown in Section B.2, are:



𝑤 = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) (D-FOC)

𝑤 = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) (U-FOC)

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑑/𝑑𝑤)
[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑑/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0 (D-B-FOC)

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑢/𝑑𝑤)
[𝑝(𝑞) − 𝑤] 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑢/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] 𝑞

)
= 0 (U-B-FOC)

Equilibrium quantities are given by:

𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

©­­­«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0 (MP bargaining)

(1 − 𝛽)
(

1
𝑐′(𝑞)

)
+ 𝛽

©­­­«
−𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞

ª®®®¬ = 0 (MS bargaining)
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B.2 Derivation of FOCs Under Sequential Bargaining

B.2.1 U-B-FOC

Proof. We differentiate the logarithm of the objective with respect to 𝑤:

𝛽

(
1

[𝑝(𝑞) − 𝑤] 𝑞 · 𝑑

𝑑𝑤
([𝑝(𝑞) − 𝑤] 𝑞)

)
+ (1 − 𝛽)

(
1

[𝑤 − 𝑐(𝑞)] 𝑞 · 𝑑

𝑑𝑤
([𝑤 − 𝑐(𝑞)] 𝑞)

)
= 0

Note the following intermediate derivatives:
Derivative of [𝑝(𝑞) − 𝑤] 𝑞:

𝑑

𝑑𝑤
([𝑝(𝑞) − 𝑤] 𝑞) =

(
𝑑

𝑑𝑤
[𝑝(𝑞) − 𝑤]

)
𝑞 + [𝑝(𝑞) − 𝑤] 𝑑𝑞

𝑑𝑤

= −𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤])
𝑑𝑞

𝑑𝑤

Derivative of [𝑤 − 𝑐(𝑞)] 𝑞:

𝑑

𝑑𝑤
([𝑤 − 𝑐(𝑞)] 𝑞) =

(
𝑑

𝑑𝑤
[𝑤 − 𝑐(𝑞)]

)
𝑞 + [𝑤 − 𝑐(𝑞)] 𝑑𝑞

𝑑𝑤

= 𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞)
𝑑𝑞

𝑑𝑤

Differentiating both sides of U-FOC, 𝑤 = 𝑐(𝑞) + 𝑐′(𝑞) 𝑞 with respect to 𝑤, we find

𝑑𝑞

𝑑𝑤
=

1
2 𝑐′(𝑞) + 𝑐′′(𝑞) 𝑞 .

Substituting the expressions above into the FOC yields:

𝛽
©­­«
−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤])

𝑑𝑞

𝑑𝑤
[𝑝(𝑞) − 𝑤] 𝑞

ª®®¬ + (1 − 𝛽)
©­­«
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞)

𝑑𝑞

𝑑𝑤
[𝑤 − 𝑐(𝑞)] 𝑞

ª®®¬ = 0,

and plugging in
𝑑𝑞

𝑑𝑤
:

𝛽
©­­­«
−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑤] 𝑞

ª®®®¬ + (1 − 𝛽)
©­­­«
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑤 − 𝑐(𝑞)] 𝑞

ª®®®¬ = 0.
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From U-FOC, substitute 𝑤 = 𝑐(𝑞) + 𝑐′(𝑞)𝑞:

𝑁1 = −𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1
2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞

𝐷1 = [𝑝(𝑞) − 𝑤] 𝑞 = ([𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) 𝑞 =

(
[𝑝(𝑞) − 𝑐(𝑞)]𝑞 − 𝑐′(𝑞)𝑞2

)
𝑁2 = 𝑞 + (𝑐′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞 = 𝑞

𝐷2 = [𝑤 − 𝑐(𝑞)] 𝑞 = 𝑐′(𝑞)𝑞2

After simplifying, substitute terms back into to yield the final form of (U-B-FOC):

𝛽
©­­­«
−𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞

ª®®®¬ + (1 − 𝛽)
(

1
𝑐′(𝑞)

)
= 0

□

B.2.2 D-B-FOC

Proof. Calculate 𝑑𝑞

𝑑𝑤
using 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞:

𝑑𝑞

𝑑𝑤
=

1
2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞 .

Substitute 𝑑𝑞

𝑑𝑤
and 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞 into the FOC:

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) · 1
2𝑝′(𝑞)+𝑝′′(𝑞)𝑞

[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞)+𝑝′′(𝑞)𝑞

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0

From U-FOC, substite 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞:

𝑁1 = −𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞) 𝑞 − 𝑐′(𝑞) 𝑞]) 1
2 𝑝′(𝑞) + 𝑝′′(𝑞) 𝑞

𝐷1 = [𝑝(𝑞) − 𝑤] 𝑞 = ([𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞) 𝑞) 𝑞 =

(
[𝑝(𝑞) − 𝑐(𝑞)] 𝑞 − 𝑝′(𝑞) 𝑞2

)
𝑁2 = 𝑞 + (𝑐′(𝑞) 𝑞 − 𝑐′(𝑞) 𝑞) 1

2 𝑐′(𝑞) + 𝑐′′(𝑞) 𝑞 = 𝑞

𝐷2 = [𝑤 − 𝑐(𝑞)] 𝑞 = 𝑝′(𝑞) 𝑞2
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After simplifying, plug the terms back into the equation to yield the final form of (D-B-FOC):

𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

©­­­«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0.

□

B.3 Proof of Proposition 1 for the Sequential Model

Proposition 1. If the upstream marginal cost is constant, 𝑚𝑐′(𝑞) = 0, the monopsonistic bargaining
problem does not have an interior solution. If the downstream marginal revenue is constant,
𝑚𝑟′(𝑞) = 0, the monopolistic bargaining problem does not have an interior solution. In all other
cases, both the monopolistic and monopsonistic bargaining problems have an interior solution
within the ranges of 𝛽 specified in Appendix D.2.

Proof. Since second-order conditions do not hold in this case, we cannot use first-order conditions
to derive an equilibrium pair (𝑤∗ , 𝑞∗). Therefore, we will directly work with the maximization
programs under each bargaining model. We split each problem into multiple cases.

Monopsonistic Bargaining:

The equilibrium (𝑤∗ , 𝑞∗) maximizes the objective functions in the monopsonistic bargaining.


max

𝑞
𝜋𝑢(𝑤∗ , 𝑞) (𝑈)

max
𝑤

𝜋𝑏(𝑤, 𝑞∗ , 𝛽) (𝐵)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0 𝜋𝑑(𝑤, 𝑞) ≥ 0

The subgame-perfect equilibrium (𝑤∗ , 𝑞∗(𝑤∗)) is determined by backward induction. Specifically,
for a given 𝑤, in the second stage, the upstream firm solves (U), yielding the best-response function
𝑞∗(𝑤). In the first stage, anticipating 𝑞∗(𝑤), the parties solve (B). Therefore, for any 𝛽, (𝑤∗ , 𝑞∗(𝑤∗)) is
a subgame-perfect equilibrium if there is no other 𝑤 such that 𝜋𝑏(𝑤, 𝑞∗(𝑤), 𝛽) > 𝜋𝑏(𝑤∗ , 𝑞∗(𝑤∗), 𝛽),
and 𝑞∗(𝑤) is indeed the maximizer of (U). We analyze equilibrium under different 𝛽 values.

Case I: 𝛽 ∈ (0, 1)

If the marginal cost is constant, the equilibria for 𝛽 ∈ (0, 1) in the sequential monopsony model are
𝑤∗ > 𝑐 and 𝑞∗(𝑤) :

𝑞∗(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

[0, 𝑝−1(𝑤)], 𝑐 = 𝑤,
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where 𝑞∗(𝑤) is the trivial reaction function of upstream when marginal cost is constant. Now, we
must show that any 𝑤 such that 𝑤 ≥ 𝑐 is an equilibrium. This follows because 𝜋𝑏 = 0 for any value
of 𝑤 since when 𝜋𝑢 = 0 and 𝜋𝑑 = 0 when 𝑤 = 𝑐 and 𝑤 > 𝑐, respectively. Therefore, there is no
profitable deviation.

Case II: 𝛽 = 1

If marginal cost is constant, there are two equilibria for 𝛽 = 1 in the sequential monopsony model:

𝑞∗1(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

(0, 𝑝−1(𝑤)), 𝑐 = 𝑤.

𝑤∗
1 = 𝑐 and 𝑞∗2(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

𝑝−1(𝑤), 𝑐 = 𝑤.

𝑤∗
2 ≥ 𝑐

(i) Observe that in the first equilibrium𝜋𝑑(𝑞∗1 , 𝑤∗
1) > 0. This is an equilibrium because any deviation

from 𝑤∗
1 = 𝑐 to 𝑤̃ > 𝑐 gives the downstream zero profit. Moreover, upstream profit is zero at 𝑤 = 𝑐

for any value of 𝑞. Therefore, there is a profitable deviation for the upstream.
(ii) At 𝑞∗2(𝑤) the downstream profit is always zero so any 𝑤 is an equilibrium.

Case III: 𝛽 = 0

If marginal cost is constant for 𝛽 = 0, thenequilibrium is given by:

𝑞∗1(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

(0, 𝑝−1(𝑤)), 𝑐 = 𝑤.

𝑤∗
1 = argmax𝑤 (𝑤 − 𝑐)𝑝−1(𝑤).

When 𝑤 = 𝑐, upstream profit is zero, which cannot be an equilibrium since 𝑤 > 𝑐 leads to positive
profit for the upstream. For 𝑤 > 𝑐, the best response in the second stage is given by 𝑝−1(𝑤), which
leads to the profit function (𝑤 − 𝑐)𝑝−1(𝑤). The equilibrium 𝑤 maximizes this profit function.
Monopolistic Bargaining:

Equilibrium under monopolistic bargaining is given below. Since the proofs closely follow the
proofs of monopsonistic bargaining, they are omitted.

Case I: 𝛽 ∈ (0, 1)

𝑞∗(𝑤) =


0, 𝑝 < 𝑤,

𝑐−1(𝑤), 𝑝 > 𝑤,

[0, 𝑐−1(𝑤)], 𝑝 = 𝑤.

𝑤∗ < 𝑝.
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Case II: 𝛽 = 1

𝑞∗1(𝑤) =


0, 𝑝 < 𝑤,

𝑐−1(𝑤), 𝑝 > 𝑤,

(0, 𝑐−1(𝑤)), 𝑝 = 𝑤.

𝑤∗
1 = 𝑝 and 𝑞∗2(𝑤) =


0, 𝑝 < 𝑤,

𝑐−1(𝑤), 𝑝 > 𝑤,

𝑐−1(𝑤), 𝑝 = 𝑤.

𝑤∗
2 ≤ 𝑝.

Case II: 𝛽 = 0

𝑞∗1(𝑤) =


0, 𝑝 < 𝑤,

𝑐−1(𝑤), 𝑝 > 𝑤,

(0, 𝑐−1(𝑤)]), 𝑝 = 𝑤.

𝑤∗
1 = argmax𝑤 (𝑝 − 𝑤)𝑐−1(𝑤).

Note that for all 𝛽 values in both monopsonistic and monopolistic bargaining, either the downstream
profit or upstream profits are zero. This proves that no interior equilibrium exists.

What’s left to show is that if 𝑚𝑐′(𝑞) > 0, and 𝑚𝑟′(𝑞) < 0, equilibrium exists for an interior
solution within the 𝛽 ranges specified in the proposition in both monopsonistic and monopolistic
bargaining. This result follows from Lemma OA-5. □

B.4 Proof of Lemma 3

Lemma 3: Lemma 1 extends to sequential bargaining models under the additional assumptions
that 𝑚𝑐′′(𝑞) ≥ 0 and positive markdown Δ𝑑 ≥ 0.

Proof. We start by proving 𝑑𝑞

𝑑𝛽 < 0. The first-order condition (D-B-FOC) is given by

𝑓 (𝛽, 𝑞) = (1 − 𝛽)
(

1
𝑐′(𝑞)

)
+ 𝛽

(
𝑁(𝑞)︷                                                            ︸︸                                                            ︷

− 𝑞 +
( 𝐵(𝑞)︷                                      ︸︸                                      ︷
[𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞) 𝑞 − 𝑐′(𝑞) 𝑞]

) 𝑠(𝑞)︷︸︸︷
𝑑𝑞

𝑑𝑤
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞) 𝑞︸                       ︷︷                       ︸

𝐷(𝑞)

)
= 0.

By the Implicit Function Theorem, we have

𝑑𝑞

𝑑𝛽
= −

𝜕 𝑓
𝜕𝛽

𝜕 𝑓
𝜕𝑞

= −
− 1

𝑐′(𝑞) +
𝑁(𝑞)
𝐷(𝑞)

(1 − 𝛽)
(
− 𝑐′′(𝑞)

[𝑐′(𝑞)]2

)
+ 𝛽

𝑁′(𝑞)𝐷(𝑞)−𝑁(𝑞)𝐷′(𝑞)
[𝐷(𝑞)]2

(OA.5)
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where we define the following functions:

𝐵(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]

𝑁(𝑞) = −𝑞 + (𝐵(𝑞)) 𝑠(𝑞)

𝐷(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞 > 0

𝐷′(𝑞) = 𝑝′(𝑞) − 2𝑐′(𝑞) − 𝑐′′(𝑞)𝑞 < 0

𝐵′(𝑞) = [𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝′′(𝑞)𝑞 + 𝑝′(𝑞)] − [𝑐′′(𝑞)𝑞 + 𝑐′(𝑞)] < 0

𝑠(𝑞) =
𝑑𝑞

𝑑𝑤
=

1
2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞 > 0

𝑠′(𝑞) = − 3𝑐′′(𝑞) + 𝑐′′′(𝑞)𝑞
(2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞)2

< 0

The function 𝑠(𝑞) is positive by our assumptions on the cost function. From 𝑝′(𝑞) ≤ 0, we deduce
𝐷′(𝑞) < 0. Next, 𝐵′(𝑞) is negative since our assumptions on cost and revenue are such that
𝑝′(𝑞) − 𝑐(𝑞) ≤ 0 and the remaining terms sum to a value strictly less than zero as a result of
Properties 1 and 2. Furthermore, 𝑠′(𝑞) is negative since we assumed 𝑚𝑐′′(𝑞) ≥ 0. Finally, 𝐷(𝑞) > 0
because 𝐷(𝑞) = 𝑝(𝑞) − 𝑤 with 𝑤 = 𝑐′(𝑞) 𝑞 + 𝑐(𝑞), and the participation constraint ensures that
𝑝(𝑞) ≥ 𝑤. Now, observe that the (U-B-FOC) can be written as

𝑓 (𝛽, 𝑞) = (1 − 𝛽)
(

1
𝑐′(𝑞)

)
+ 𝛽

(
𝑁(𝑞)
𝐷(𝑞)

)
= 0 (OA.6)

Using this equation, we can solve for 𝑁(𝑞)/𝐷(𝑞) as follows:

𝑁(𝑞)
𝐷(𝑞) = −1 − 𝛽

𝛽
1

𝑐′(𝑞) .

Substituting this equation into 𝜕 𝑓
𝜕𝛽 in Equation (OA.5), we obtain:

𝜕 𝑓

𝜕𝛽
= − 1

𝑐′(𝑞) +
𝑁(𝑞)
𝐷(𝑞) = − 1

𝛽𝑐′(𝑞)

Substituting this equation, 𝑑𝑞

𝑑𝛽 now becomes:

𝑑𝑞

𝑑𝛽
= −

− 1
𝛽𝑐′(𝑞)

(1 − 𝛽)
(
− 𝑐′′(𝑞)

[𝑐′(𝑞)]2

)
+ 𝛽

𝑁′(𝑞)𝐷(𝑞)−𝑁(𝑞)𝐷′(𝑞)
[𝐷(𝑞)]2

.
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Further manipulating this equation, and using the signs that we identified above, we obtain:

𝑑𝑞

𝑑𝛽
= −

𝜕 𝑓
𝜕𝛽

𝜕 𝑓
𝜕𝑞

= −

(−)︷   ︸︸   ︷
− 1
𝛽𝑐′(𝑞)

(1 − 𝛽)
(
−

𝑐′′(𝑞)
[𝑐′(𝑞)]2

)
︸                  ︷︷                  ︸

(−)

+ 𝛽
𝑁′(𝑞)
𝐷(𝑞) − 𝛽

𝑁(𝑞)
𝐷(𝑞)︸︷︷︸
(−)

𝐷′(𝑞)
𝐷(𝑞)︸︷︷︸
(−)

.

The only remaining term is 𝑁′(𝑞)/𝐷(𝑞). We already know that 𝐷(𝑞) > 0, so this sign depends on
the sign of 𝑁′(𝑞), which is written as

𝑁′(𝑞) = −𝑞 + 𝐵′(𝑞)𝑠(𝑞) + 𝐵(𝑞)𝑠′(𝑞).

Since 𝑠(𝑞) > 0 and 𝐵′(𝑞) < 0, the second term is negative. Since 𝑠′(𝑞) < 0, we need to show that
𝐵(𝑞) > 0 to prove that 𝑁′(𝑞) < 0. 𝐵(𝑞) can be written as

𝐵(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞].

From (U-FOC), we have 𝑤 = 𝑐′(𝑞)(𝑞) + 𝑐(𝑞), so we can write 𝐵(𝑞) as

𝐵(𝑞) = (𝑝(𝑞) − 𝑝′(𝑞)𝑞 − 𝑤) = 𝑚𝑟(𝑞) − 𝑤.

By our assumption that (𝑚𝑟(𝑞) − 𝑤) > 0, we have 𝐵(𝑞) > 0 and 𝑁′(𝑞) < 0. This implies that 𝑑𝑞

𝑑𝛽 < 0.
The proof of 𝑑Δ𝑑/𝑑𝛽 > 0 is identical to the proof of Lemma 1 and is therefore omitted.

□

B.5 Proof of Lemma 4

Lemma 4: Lemma 2 extends to sequential bargaining models under the additional assumptions
that 𝑚𝑟′′(𝑞) ≤ 0 and positive upstream markup 𝜇𝑢 ≥ 0.

Proof. Note that (D-B-FOC) can be written as

𝑓 (𝛽, 𝑞) = 𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

©­­­«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0
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By the Implicit Function Theorem,

𝑑𝑞

𝑑𝛽
= −

𝜕 𝑓
𝜕𝛽

𝜕 𝑓
𝜕𝑞

= −
1

𝑝′(𝑞) −
𝑁(𝑞)
𝐷(𝑞)

𝛽
(
− 𝑝′′(𝑞)

[𝑝′(𝑞)]2

)
+ (1 − 𝛽)𝑁

′(𝑞)𝐷(𝑞)−𝑁(𝑞)𝐷′(𝑞)
[𝐷(𝑞)]2

, (OA.7)

where the preceding functions are defined as:

𝐵(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]

𝑁(𝑞) = 𝑞 + (𝐵(𝑞)) 𝑠(𝑞)

𝐷(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] − 𝑝′(𝑞)𝑞 < 0

𝐷′(𝑞) = 𝑐′(𝑞) − 2𝑝′(𝑞) − 𝑝′′(𝑞)𝑞 > 0

𝑁′(𝑞) = 1 + 𝐵′(𝑞)𝑠(𝑞) + 𝐵(𝑞)𝑠′(𝑞)

𝐵′(𝑞) = 2[𝑝′(𝑞) − 𝑐′(𝑞)] + 𝑞[𝑝′′(𝑞) − 𝑐′′(𝑞)] < 0

𝑠(𝑞) =
𝑑𝑞

𝑑𝑤
=

1
2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞 < 0

𝑠′(𝑞) = −
3𝑝′′(𝑞) + 𝑞𝑝′′′(𝑞)
(2𝑝′(𝑞) + 𝑞𝑝′′(𝑞))2

> 0

The quantity 𝐷(𝑞) is negative because 𝑤 = 𝑝′(𝑞) 𝑞 + 𝑝(𝑞), so 𝐷(𝑞) = 𝑤 − 𝑐(𝑞), and the participation
constraint ensures that 𝐷(𝑞) < 0. Next, 𝐷′(𝑞) is non-negative since 𝑐′(𝑞) ≥ 0 and (2 𝑝′(𝑞) +
𝑝′′(𝑞) 𝑞) < 0 by our assumption on marginal revenue. Furthermore, 𝐵′(𝑞) is negative because
(2 𝑐′(𝑞) + 𝑐′′(𝑞) 𝑞) > 0 while (2 𝑝′(𝑞) + 𝑝′′(𝑞) 𝑞) < 0. We also have 𝑠(𝑞) < 0 and 𝑠′(𝑞) > 0 by our
assumption on marginal revenue and that 𝑚𝑟′′(𝑞) ≤ 0.

Now, observe that the (U-B-FOC) can be written as

𝑓 (𝛽, 𝑞) = 𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

(
𝑁(𝑞)
𝐷(𝑞)

)
= 0 (OA.8)

Using this, we can solve for 𝑁(𝑞)/𝐷(𝑞) as follows:

𝑁(𝑞)
𝐷(𝑞) = − 𝛽

1 − 𝛽
1

𝑝′(𝑞)

Substituting this equation into 𝜕 𝑓
𝜕𝛽 in Equation (OA.5) we obtain

𝜕 𝑓

𝜕𝛽
=

1
𝑝′(𝑞) −

𝑁(𝑞)
𝐷(𝑞) =

1
(1 − 𝛽)𝑝′(𝑞)
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Substituting this equation, 𝑑𝑞

𝑑𝛽 now becomes

𝑑𝑞

𝑑𝛽
= −

1
(1−𝛽)𝑝′(𝑞)

𝛽
(
− 𝑝′′(𝑞)

[𝑝′(𝑞)]2

)
+ (1 − 𝛽)𝑁

′(𝑞)𝐷(𝑞)−𝑁(𝑞)𝐷′(𝑞)
[𝐷(𝑞)]2

Rewriting the above, we have

𝑑𝑞

𝑑𝛽
= −

𝜕 𝑓
𝜕𝛽

𝜕 𝑓
𝜕𝑞

= −

(−)︷        ︸︸        ︷
1

(1 − 𝛽)𝑝′(𝑞)

𝛽

(
− 𝑝′′(𝑞)
[𝑝′(𝑞)]2

)
︸          ︷︷          ︸

(+)

+ 𝛽
𝑁′(𝑞)
𝐷(𝑞) − 𝛽

𝑁(𝑞)
𝐷(𝑞)︸︷︷︸
(+)

𝐷′(𝑞)
𝐷(𝑞)︸︷︷︸
(−)

We have left to determine the sign of 𝑁′(𝑞)/𝐷(𝑞). We already know that 𝐷(𝑞) < 0, so this sign
depends on the sign of 𝑁′(𝑞), which is written as

𝑁′(𝑞) = 1 + 𝐵′(𝑞)𝑠(𝑞) + 𝐵(𝑞)𝑠′(𝑞)

Since 𝑠(𝑞) < 0 and 𝐵′(𝑞) < 0, the second term is positive. Since 𝑠′(𝑞) > 0, we need to show that
𝐵(𝑞) > 0 to prove that 𝑁′(𝑞) > 0. 𝐵(𝑞) is written as

𝐵(𝑞) = [𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]

From (D-FOC), we have 𝑤 = 𝑝′(𝑞)(𝑞) + 𝑝(𝑞), so we can write 𝐵(𝑞) as

𝐵(𝑞) = (𝑝(𝑞) − 𝑝′(𝑞)𝑞 − 𝑤) = 𝑤 − 𝑚𝑐(𝑞)

By our assumption, (𝑤 − 𝑚𝑐(𝑞)) > 0, so 𝐵(𝑞) > 0 and 𝑁′(𝑞) > 0. Therefore, 𝑑𝑞

𝑑𝛽 > 0. The proof of
𝑑
𝑑𝛽𝜇

𝑢 < 0 is identical to the proof in Lemma 2 and is therefore omitted. □

B.6 Proof of Proposition 2 for the Sequential Model

Proposition 2. There exists a bargaining parameter 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) ∈ (0, 1) at which the monop-

sonistic bargaining model, the monopolistic bargaining model, and the joint-profit-maximization
models imply an identical equilibrium output in both simultaneous and sequential models. We
denote 𝛽∗ as the ‘"efficient level of buyer power."
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Proof. For monopsonistic conduct, substituting (J-FOC) into monopsony FOC

(1 − 𝛽)
(

1
𝑐′(𝑞)

)
+ 𝛽

©­­­«
−𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞

ª®®®¬ = 0,

we obtain:

𝛽

𝑝′(𝑞) +
1 − 𝛽

𝑐′(𝑞) = 0.

This equation holds at 𝛽 =
−𝑝′(𝑞)

𝑐′(𝑞) − 𝑝′(𝑞) , which concludes the proof for monopsonistic bargaining.

For monopsonistic conduct, substitutin(J-FOC) into monopsony FOC,

𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

©­­­«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0,

we obtain

𝛽

𝑞𝑝′(𝑞) +
1 − 𝛽

𝑐′(𝑞)𝑞 = 0.

This equation holds at 𝛽 =
−𝑝′(𝑞)

𝑐′(𝑞) − 𝑝′(𝑞) , which concludes the proof for monopolistic bargaining. □
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C Proofs of Other Results

C.1 Proof of Corollary 1

Corollary 1: Under monopolistic bargaining, downstream markdown is always zero, so the buyer
has no monopsony power. Under monopsonistic bargaining, upstream markup is always zero, so
the seller has no monopoly power.

Proof. 𝜇𝑝 = 0 follows immediately from the FOC of the monopsonistic bargaining problem, which
implies that 𝑤(𝑞) = 𝑚𝑐(𝑞). 𝜇𝑤 = 0 follows immediately from the FOC of the monopolistic bargain-
ing problem, which implies that 𝑤(𝑞) = 𝑚𝑟(𝑞).

□

C.2 Proof of Corollary 2

Corollary 2. The efficient level of buyer power 𝛽∗ weakly decreases with the elasticity of upstream
marginal costs and decreases with the elasticity of downstream demand.

Proof. Given that −𝑝′(𝑞∗) ≥ 0, an increase in 𝑐′(𝑞∗) weakly increases the denominator of 𝛽∗ so 𝛽∗ is
weakly decreasing with 𝑐′(𝑞∗). Observe that 1/𝛽∗ = 1 − 𝑐′(𝑞∗)/𝑝′(𝑞∗). Since 𝑐′(𝑞∗)/𝑝′(𝑞∗) ≤ 0, 1/𝛽∗ is
weakly decreasing with 𝑝′(𝑞∗), which implies that 𝛽∗ is weakly increasing with 𝑝′(𝑞∗). □

C.3 Proof of Corollary 3

Corollary 3. If upstream marginal costs are constant, the efficient level of buyer power is one
(𝛽∗ = 1). If downstream demand is fully elastic, the efficient level of buyer power is zero (𝛽∗ = 0).

Proof. This immediately follows from substituting 𝑐′(𝑞∗) = 0 into 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗)−𝑝′(𝑞∗) and from substi-

tuting 𝑝′(𝑞∗) = 0 into 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗)−𝑝′(𝑞∗) . □

C.4 Proof of Proposition 3

Proposition 3: Consumer surplus is maximized at 𝛽 = 1 under monopolistic conduct, and at 𝛽 = 0
under monopsonistic conduct.

Proof. First, consider monopolistic conduct. As is proven in Appendices D.1.5 and D.1.1, at 𝛽 = 1
we have that 𝑤(𝛽 = 1) = 𝑐(𝑞(𝛽 = 1)) = 𝑚𝑟(𝑞(𝛽 = 1)). Achieving any 𝑞̃ > 𝑞(𝛽 = 1) requires
a wholesale price 𝑤̃ < 𝑐(𝑞̃). This leads to negative profits of upstream, and hence, violates the
participation constraint for upstream.

Second, consider monopsonistic conduct. As is proven in Appendices D.1.7 and D.1.3, at 𝛽 = 0
we have that 𝑝(𝛽 = 0) = 𝑚𝑐(𝑞(𝛽 = 0)) = 𝑤(𝛽 = 0). Achieving any 𝑞̃ > 𝑞(𝛽 = 0) requires a wholesale
price 𝑝̃ < 𝑤(𝑞̃). This leads to negative profits of downstream, and hence, violates the participation
constraint for downstream. □
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C.5 Proof of Proposition 4

Proposition 4: Total surplus is maximized at 𝛽†, with 𝛽∗ ≤ 𝛽† ≤ 1 under monopolistic bargaining,
and 𝛽† = 0 under monopsonistic bargaining.

Proof. Total welfare is maximized if prices are equal to marginal costs. Let 𝑞† be the total-welfare
maximizing output level:

𝑝(𝑞†) = 𝑚𝑐(𝑞†).

First, consider monopsonistic bargaining. As shown in Appendix D.1.4, 𝛽 = 0 results in the
condition 𝑝 = 𝑚𝑐. This is the first-best any planner could achieve, so total welfare is maximized
at this point. Second, consider monopolistic bargaining. At 𝛽 = 𝛽∗, 𝑚𝑟(𝑞∗) = 𝑚𝑐(𝑞∗). Given that
prices are set by downstream at a markup above marginal costs, this implies that 𝑝 > 𝑚𝑐 at the
joint-profit-maximization level of buyer power 𝛽∗:

𝑝(𝛽 = 𝛽∗) = 𝑚𝑐(𝑞∗) + 𝜇(𝑞∗).

As is proven in Appendix D.1.1, at 𝛽 = 1 we have that 𝑚𝑟(𝑞(𝛽 = 1)) = 𝑐(𝑞(𝛽 = 1)). Hence, prices
are above average costs:

𝑝(𝑞(𝛽 = 1)) = 𝑐(𝑞(𝛽 = 1)) + 𝜇(𝑞(𝛽 = 1)).

Let 𝑏(𝑞(𝛽 = 1)) = 𝑚𝑐(𝑞(𝛽 = 1)) − 𝑐(𝑞(𝛽 = 1)). It follows that there are three possibilities:
𝑏(𝑞(𝛽 = 1)) = 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† = 1

𝑏(𝑞(𝛽 = 1)) < 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† = 1

𝑏(𝑞(𝛽 = 1)) > 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† ∈ (𝛽∗ , 1)

First, if 𝑏(𝑞(𝛽 = 1)) = 𝜇(𝑞(𝛽 = 1)), 𝛽 = 1 maximizes total welfare and leads to the first-best
solution 𝑝(𝑞(𝛽 = 1)) = 𝑚𝑐(𝑞(𝛽 = 1)). Second, if 𝑏(𝑞(𝛽 = 1)) < 𝜇(𝑞(𝛽 = 1)), prices are still too high
at 𝛽 = 1, as 𝑝(𝑞(𝛽 = 1)) > 𝑚𝑐(𝑞(𝛽 = 1)). However, given that 𝛽 = 1 is the highest possible value
of 𝛽, welfare is maximized at this value. Third, if 𝑏(𝑞(𝛽 = 1)) > 𝜇(𝑞(𝛽 = 1)), the price at 𝛽 = 1 is
below marginal costs, meaning that there is overproduction. Given that 𝜕𝑞

𝜕𝛽 > 0 under monopolistic
conduct, this implies that total welfare is maximized at 𝛽∗ < 𝛽 < 1.

□

C.6 Proof of Theorem 1

Theorem 1. Under Participation Constraint 1, for any 𝛽, either the monopsonistic or the monopo-
listic bargaining equilibrium exists, but not both. Specifically, the monopsonistic equilibrium exists
if 𝛽 ≥ 𝛽∗, while the monopolistic equilibrium exists if 𝛽 ≤ 𝛽∗.
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Proof. First, consider the monopsonistic bargaining model. It follows from U-FOC that 𝑤 = 𝑚𝑐(𝑞),
so the restriction 𝑤 ≥ 𝑚𝑐(𝑞) is satisfied at any 𝛽. At 𝛽 = 𝛽∗, the monopsonistic bargaining model
equates joint profit maximization, so 𝑚𝑐(𝑞(𝛽∗)) = 𝑚𝑟(𝑞(𝛽∗)). Hence, 𝑤(𝛽∗) = 𝑚𝑟(𝑞(𝛽∗)).

Consider 𝛽 = 𝛽∗ − 𝜖, for 𝜖 > 0. Given that 𝜕𝑞
𝜕𝛽 < 0, that 𝑚𝑐′(𝑞) > 0, and that 𝑤(𝑞) = 𝑚𝑐(𝑞), it

follows that 𝜕𝑤
𝜕𝛽 < 0. This implies that 𝑤(𝛽∗ − 𝜖) > 𝑚𝑟(𝑞(𝛽∗).

From Lemma 1, 𝑞(𝛽∗ − 𝜖) > 𝑞(𝛽∗). Given Property 2, 𝑚𝑟′(𝑞) < 0, then 𝑚𝑟(𝑞(𝛽∗ − 𝜖)) < 𝑚𝑟(𝑞(𝛽∗)).
It follows that

𝑤(𝛽∗ − 𝜖) > 𝑚𝑟(𝑞(𝛽∗ − 𝜖)).

Hence, the wholesale price markdown is negative (wage is above marginal revenue product of
downstream) in the monopsonistic bargaining model if 𝛽 < 𝛽∗.

Analogously, it follows straightforwardly that markdowns are positive for values of 𝛽 > 𝛽∗ in
the monopsonistic model:

𝑤(𝛽∗ + 𝜖) < 𝑚𝑟(𝑞(𝛽∗ + 𝜖)).

Second, consider the monopolistic bargaining model. The restriction 𝑤 ≤ 𝑚𝑟(𝑞) is always
satisfied under monopolistic conduct, because D-FOC implies that𝑤 = 𝑚𝑟(𝑞). Consider a 𝛽 = 𝛽∗+𝜖,
for 𝜖 > 0.

Following the same logic as above, at 𝛽 = 𝛽∗, we have 𝑤(𝛽∗) = 𝑚𝑐(𝑞(𝛽∗)). Given that 𝜕𝑤
𝜕𝛽 < 0, it

follows that 𝑤(𝛽∗ + 𝜖) < 𝑚𝑐(𝑞(𝛽∗)).
Lemma 2 implies that 𝑞(𝛽∗ + 𝜖) > 𝑞(𝛽∗). Increasing marginal costs imply that 𝑚𝑐(𝑞(𝛽∗ + 𝜖) >

𝑚𝑐(𝑞(𝛽∗)). It follows that
𝑤(𝛽∗ + 𝜖) < 𝑚𝑐(𝑞(𝛽∗ + 𝜖)).

Hence, seller markups are negative in the monopolistic bargaining model if 𝛽 > 𝛽∗.
Again, it is straightforward to repeat the same argument to show that markups are positive as

soon as 𝛽 < 𝛽∗ in the monopolistic bargaining model:

𝑤(𝛽∗ − 𝜖) > 𝑚𝑐(𝑞(𝛽∗ − 𝜖))

□

C.7 Proof of Corollary 4

Corollary 4. An increase in buyer power 𝛽 lowers output if 𝛽 > 𝛽∗ but increases output if 𝛽 < 𝛽∗ in
both simultaneous and sequential models.

Proof. This follows immediately from Theorem 1, Lemmas 2 and 4, and Lemmas 1 and 3. □
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C.8 Proof of Proposition 5

Proposition 5. The restrictions 𝜇𝑢 ≥ 0 and Δ𝑑 ≥ 0 ensure that equilibrium output is always smaller
than or equal to the efficient-bargaining output level 𝑞∗.

Proof. First, suppose 𝑞 > 𝑞∗ and monopsonistic conduct applies. Given Lemma 1, this holds if
and only if 𝑤(𝑞) > 𝑤(𝑞∗). The first-order condition for joint profit maximization implies that
𝑤(𝑞∗) = 𝑚𝑟(𝑞∗), hence 𝑤(𝑞) > 𝑚𝑟(𝑞∗). Under the assumption that property 2 holds, this implies
that 𝑚𝑟′(𝑞) < 0, so 𝑤(𝑞) > 𝑚𝑟(𝑞). Hence, the markdown is negative for any value of 𝑞 > 𝑞∗ under
monopsonistic conduct.

Second, suppose 𝑞 > 𝑞∗ and monopolistic conduct applies. Given Lemma 2, this holds if
and only if 𝑤(𝑞) < 𝑤(𝑞∗). The first-order condition for joint profit maximization implies that
𝑤(𝑞∗) = 𝑚𝑐(𝑞∗). Given assumption 1, 𝑚𝑐′(𝑞) > 0, which means that 𝑤(𝑞) < 𝑚𝑐(𝑞). Hence, the
supplier markup is negative for any 𝑞 > 𝑞∗ under monopolistic conduct. □

C.9 Proof of Theorem 2

Theorem 2. Under Participation Constraint 2, for any 𝛽, either the monopsonistic or the monopo-
listic bargaining equilibrium exists, but not both. Specifically, the monopsonistic equilibrium exists
if 𝛽 ≥ 𝛽∗, while the monopolistic equilibrium exists if 𝛽 ≤ 𝛽∗.

Proof. Suppose 𝛽 < 𝛽∗ and consider the case of monopsonistic conduct where 𝑈 chooses output.
From Theorem 1, this implies that 𝛽 < 𝛽∗ ⇔ 𝑤(𝛽) < 𝑚𝑐(𝛽). Hence, upstream profits decrease in
output for 𝛽 < 𝛽∗ in the monopsonistic model:

𝜕𝜋𝑚𝑠
𝑢

𝜕𝑞
< 0 ⇔ 𝛽 < 𝛽∗

Given Lemma 1, this equation can be rewritten as

𝜕𝜋𝑚𝑠
𝑢

𝜕𝛽
> 0 ⇔ 𝛽 < 𝛽∗.

At 𝛽 = 𝛽∗, firms maximize joint profits, so upstream receives a profit 𝜋 𝑗
𝑢 . It follows that

𝜋𝑚𝑠
𝑢 < 𝜋

𝑗
𝑢 ⇔ 𝛽 < 𝛽∗.

Alternatively, suppose 𝛽 > 𝛽∗ and 𝐷 chooses output, which is the monopolistic conduct case.
Similar to the reasoning above, Theorem 1 implies that 𝑤(𝛽) > 𝑚𝑟(𝛽) in this case. Hence, buyer
profits increase if output falls:

𝜕𝜋
𝑚𝑝

𝑑

𝜕𝑞
< 0 ⇔ 𝛽 > 𝛽∗
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𝜕𝜋
𝑚𝑝

𝑑

𝜕𝛽
< 0 ⇔ 𝛽 > 𝛽∗

At 𝛽 = 𝛽∗, downstream obtains the joint-profit-maximization profit 𝜋 𝑗

𝑑
. It follows that

𝜋
𝑚𝑝

𝑑
< 𝜋

𝑗

𝑑
⇔ 𝛽 > 𝛽∗

□

C.10 Proof of Proposition 6

Proposition 6: Under either conduct selection criteria from Participation Constraint 1 or Participa-
tion Constraint 2, both consumer surplus and total surplus are maximized at the efficient level of
buyer power 𝛽∗.

Proof. As was proven in C.4, consumer surplus is monotonically increasing in output. Proposition
5 states that under our conduct selection criteria, output is maximized at 𝛽 = 𝛽∗. Hence, consumer
surplus is maximized at 𝛽 = 𝛽∗.

Turning to total surplus, Proposition 4 states that under monopolistic competition, the bargain-
ing parameter 𝛽† that maximizes total surplus satisfies

𝛽† ∈ (𝛽∗ , 1).

However, Theorems 1 and 2 rule out that any 𝛽 > 𝛽∗ can be an equilibrium under monopolistic
conduct. Hence, 𝛽† = 𝛽∗ under monopolistic conduct.

Similarly, Proposition 4 states that under monopsonistic competition, it holds that

𝛽† ∈ (0, 𝛽∗)

Again, Theorems 1 and 2 rule out that any 𝛽 < 𝛽∗ can be an equilibrium under monopsonistic
conduct. Hence, 𝛽† = 𝛽∗ under monopsonistic conduct. It follows that 𝛽† = 𝛽∗ under both
monopolistic and monopsonistic conduct, so total surplus is maximized at 𝛽∗. □

OA - 27



D Other Theory Results

D.1 Limit Cases for 𝛽

We solve each version of the model (monopolistic-monopsonistic and simultaneous-sequential) as
a constrained profit-maximization model in the limiting cases of 𝛽 = 1 and 𝛽 = 0 and compare
these corner solutions to the solutions obtained from the first-order conditions stated in the main
text. These results are summarized in Table OA-1.

The most important takeaways from this appendix are that (i) the sequential monopsony has a
solution at 𝛽 = 0 using the constrained optimization problem but not using the FOCs, and (ii) the
sequential monopoly model has a solution at 𝛽 = 1 using the constrained optimization problem,
but not using the FOCs. Hence, the participation constraints 𝜋𝑑 ≥ 0 and 𝜋𝑢 ≥ 0 are only binding
in these two instances.

D.1.1 Simultaneous Monopoly, 𝛽 = 1
We solve the constrained optimization problem faced by downstream:

max
𝑞

𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0.

In this scenario, the downstream makes a TIOLI offer to the upstream, which results in the wholesale
price being set equal to the upstream’s average cost:

max
𝑤,𝑞

𝜋𝑑(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞).

This corner solution is identical to the solution obtained from the FOC:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞).

D.1.2 Simultaneous Monopoly, 𝛽 = 0

We solve the constrained optimization problem faced by downstream:
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0.

This yields no solution:

max
𝑞

𝜋𝑑(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), mr(𝑞) = 𝑝(𝑞)
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Working out the first-order conditions does not yield a solution either:

𝑝(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ 𝑤 = 𝑝(𝑞), mr(𝑞) = 𝑝(𝑞)

D.1.3 Simultaneous Monopsony, 𝛽 = 1


max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0.

The constrained profit-maximization problem yields no solution:

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑑(𝑤, 𝑞) ⇒ 𝑤 = 𝑐(𝑞), mc(𝑞) = 𝑤

The FOCs don’t yield a solution either:

𝑐(𝑞) = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) ⇒ 𝑤 = 𝑐(𝑞), mc(𝑞) = 𝑐(𝑞)

D.1.4 Simultaneous Monopsony, 𝛽 = 0


max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t 𝜋𝑑(𝑤, 𝑞) ≥ 0.

Solving the constrained profit-maximization problem implies a TIOLI offer being made by up-
stream, which results in the wholesale price being set equal to the downstream price:

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑑(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), mc(𝑞) = 𝑝(𝑞)

The FOC results in the same condition:

𝑝(𝑞) = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) ⇒ 𝑤 = 𝑝(𝑞), mc(𝑞) = 𝑝(𝑞)

D.1.5 Sequential Monopoly, 𝛽 = 1
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0.
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The solution based on constrained profit-maximization is

max
𝑤,𝑞

𝜋𝑑(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞)

Using the FOCs does not yield a solution:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mr(𝑞) = 𝑤, 1/(𝑝′(𝑞)𝑞) = 0

D.1.6 Sequential Monopoly, 𝛽 = 0
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t 𝜋𝑑(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit-maximization is full double marginalization:

max
𝑞

𝜋𝑑(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑤

The FOC results in the same condition:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mr(𝑞) = 𝑤

D.1.7 Sequential Monopsony, 𝛽 = 1
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit-maximization is the classical monopsony outcome:

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑚𝑐(𝑞)

The FOC results in the same condition:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mc(𝑞) = 𝑤

D.1.8 Sequential Monopsony, 𝛽 = 0
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t 𝜋𝑑(𝑤, 𝑞) ≥ 0.
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The solution based on constrained profit maximization is a TIOLI offer by upstream, which results
in 𝑚𝑐(𝑞) = 𝑝(𝑞):

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), 𝑚𝑐(𝑞) = 𝑝(𝑞)

The first-order condition does not yield a solution:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mc(𝑞) = 𝑤, 1/(𝑠′(𝑞)𝑞) = 0

D.2 Auxiliary Lemmas on Equilibrium Existence

In this appendix, we discuss the existence and unicity of the monopolistic and monopsonistic
equilibrium in both the simultaneous and sequential bargaining models.

D.2.1 Equilibrium Existence in the Simultaneous Model

In Lemmas OA-1 and OA-2, we find that in the simultaneous bargaining model, the monopsonistic
and monopolistic equilibria both exist and are unique for a different range of buyer power values.

Lemma OA-1. Assume that 𝑚𝑐′(𝑞) > 0. In the simultaneous monopsony model, equilibrium exists and is
unique in the following 𝛽 range:

𝛽 ∈ [0, 1 − lim
𝑞→0+

𝑠(𝑞))

where 𝑠(𝑞) = 𝑐′(𝑞) 𝑞
𝑝(𝑞)−𝑐(𝑞) which is bounded below by 0.

Proof. In the simultaneous monopsony model, combining (U-FOC) and (B-FOC) gives

1 − 𝛽 =
𝑐′(𝑞)𝑞

𝑝(𝑞) − 𝑐(𝑞) (OA.9)

So, 𝛽 can take any value in support of 𝑠(𝑞). Note that 𝑠(𝑞) > 0 because 𝑝(𝑞) − 𝑐(𝑞) > 0 and 𝑐′(𝑞) > 0.
Since 𝑐′(𝑞) > 0 and 𝑝(𝑞) − 𝑐(𝑞) is decreasing with 𝑞, the min𝑞 𝑠(𝑞) = lim𝑞→0+ 𝑠(𝑞). Therefore, the
maximum value 𝛽 could take in the monopsony model is

1 − lim
𝑞→0+

𝑠(𝑞)

Similarly since 𝑐′(𝑞) > 0 and 𝑞 > 0 and there exists 𝑞̄ such that 𝑝(𝑞) = 𝑐(𝑞), 𝑠(𝑞) can be arbitrarily
large max𝑞 𝑠(𝑞) > 1. Combining these two observations derives the bound for 𝛽

𝛽 ∈ [0, 1 − lim
𝑞→0+

𝑠(𝑞))
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Moreover, since 𝑠(𝑞) is a continuous function, there exists 𝑞 that satisfies Equation (OA.9) for all 𝛽
in the range given above. This proves the existence of equilibrium for all 𝛽 values.

□

Lemma OA-2. Assume that 𝑚𝑟′(𝑞) < 0. In the simultaneous monopoly model, equilibrium exists only in
the following 𝛽 range:

𝛽 ∈ ( lim
𝑞→0+

𝑠(𝑞), 1]

where 𝑠(𝑞) = 𝑝′(𝑞) 𝑞
𝑝(𝑞)−𝑐(𝑞) . This interval does not include 0.

Proof. In the simultaneous monopoly model, combining (D-FOC) and (B-FOC) gives

𝛽 = −
𝑝′(𝑞) 𝑞

𝑝(𝑞) − 𝑐(𝑞) (OA.10)

So, 𝛽 can take any value in support of 𝑠(𝑞). Note that 𝑠(𝑞) > 0 because 𝑝(𝑞)− 𝑐(𝑞) ≥ 0 and 𝑝′(𝑞) ≤ 0.
Since 𝑝′(𝑞) ≤ 0 and 𝑝(𝑞) − 𝑐(𝑞) is decreasing with 𝑞, the min𝑞 𝑠(𝑞) = lim𝑞→0+ 𝑠(𝑞). Therefore, the
maximum value 𝛽 could take in the monopoly model is

lim
𝑞→0+

𝑠(𝑞)

Similarly since 𝑝′(𝑞) ≤ 0 and 𝑞 > 0 and there exists 𝑞̄ such that 𝑝(𝑞̄) = 𝑐(𝑞̄), 𝑠(𝑞) can be arbitrarily
large, which impies that max𝑞 𝑠(𝑞) > 1. Combining these two observations derives the bound for 𝛽

𝛽 ∈ ( lim
𝑞→0+

𝑠(𝑞), 1]

Moreover, since 𝑠(𝑞) is a continuous function, there exists 𝑞 that satisfies Equation (OA.10) for all 𝛽
in the range given above. This proves the existence of equilibrium for all 𝛽 values. □

D.2.2 Equilibrium Existence in the Sequential Model

Lemma OA-3. The solution to the sequential monopoly model, characterized by its FOCs approaches as
𝛽 → 1 to the solution of the constraint-optimization problem at 𝛽 = 1.

Proof. Define

𝐴(𝑞) ≡ 1
𝑝′(𝑞) and 𝐵(𝑞) ≡ 𝑁(𝑞)

𝐷(𝑞) =
𝑞 + [ 𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞) 𝑞 − 𝑐′(𝑞) 𝑞 ] 1

2 𝑝′(𝑞)+𝑝′′(𝑞) 𝑞

𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞) 𝑞︸                   ︷︷                   ︸
𝐷(𝑞)

.
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The equation of interest is

𝛽 𝐴(𝑞) + (1 − 𝛽) 𝐵(𝑞) = 0.

Rewrite 𝛽 as 1 − 𝜀. Then the equation becomes

(1 − 𝜀)𝐴(𝑞) + 𝜀 𝐵(𝑞) = 0 =⇒ 1 − 𝜀
𝜀

𝐴(𝑞) = − 𝐵(𝑞).

As 𝜀 → 0, the left side tends to ±∞ (unless 𝑝′(𝑞) = ∞, which we rule out). Thus, 𝐵(𝑞) must also
become unbounded in magnitude. If the nominator of 𝐵(𝑞) is finite, the denominator of 𝐵(𝑞) must
vanish. Since

𝐵(𝑞) =
𝑁(𝑞)
𝐷(𝑞) with 𝐷(𝑞) = 𝑝(𝑞) − 𝑐(𝑞) + 𝑞 𝑝′(𝑞),

the only way 𝐵(𝑞) goes to infinity is if 𝐷(𝑞) vanishes. Hence, as 𝛽 → 1, we have

𝑝(𝑞) − 𝑐(𝑞) + 𝑞 𝑝′(𝑞) = 0,

which corresponds to the solution given in the constraint-optimization problem. □

Lemma OA-4. The solution to the sequential monopsony model, characterized by its FOCs approaches as
𝛽 → 0 to the solution of the constraint-optimization problem at 𝛽 = 0.

Proof. Define

𝐴(𝑞) =
1

𝑐′(𝑞) and 𝐵(𝑞) =
𝑁(𝑞)
𝐷(𝑞) =

− 𝑞 +
(
[𝑝(𝑞) − 𝑐(𝑞)] + [ 𝑝′(𝑞) 𝑞 − 𝑐′(𝑞) 𝑞 ] 1

2 𝑐′(𝑞)+𝑐′′(𝑞) 𝑞
)

𝑝(𝑞) − 𝑐(𝑞) − 𝑐′(𝑞) 𝑞︸                       ︷︷                       ︸
𝐷(𝑞)

.

The equation of interest is

(1 − 𝛽)𝐴(𝑞) + 𝛽 𝐵(𝑞) = 0.

Rewrite 𝛽 as 𝜀. Then, the equation becomes

(1 − 𝜀)𝐴(𝑞) + 𝜀 𝐵(𝑞) = 0 =⇒ − 𝜀
1 − 𝜀

𝐵(𝑞)

As 𝜀 → 0 (i.e., 𝛽 → 0), the multiplier 𝜀
1−𝜀 tends to 0. If 𝐴(𝑞) ≠ 0 is finite, we must have 𝐵(𝑞) become

unbounded (go to ±∞) in order to satisfy the above equality. This implies that as 𝛽 → 0, we have

𝑝(𝑞) − 𝑐(𝑞) − 𝑞 𝑐′(𝑞) = 0,
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which corresponds to the solution given in the constraint-optimization problem. □

Lemma OA-5. If𝑚𝑐′(𝑞) > 0 and𝑚𝑟′(𝑞) < 0 for both sequential monopolistic and monopsonistic bargaining
problems, there exists a solution for 𝛽 ∈ [0, 1]. The solution is interior for 𝛽 ∈ (0, 1).

Proof. For the monopsony model, we show in Section D.1.7 that the solution to the sequential
monopsony model exists for 𝛽 = 1, and this solution coincides with the solution given by FOCs.
Moreover, in Section D.1.8 we show that the solution to the sequential monopsony model exists
for 𝛽 = 0. Lemma OA-4 shows that the solution from FOC as 𝛽 → 0 corresponds to the solution
obtained in Section D.1.8. Therefore, the solution to FOC converges to the corner cases of 𝛽 = 0
and 𝛽 = 1. The continuity of the FOCs implies that the solution exists for any 𝛽 ∈ (0, 1). Since this
solution is given by the FOC, it is in the interior.

For the monopoly model, we show in Section D.1.6 that the solution to the sequential monopoly
model exists for 𝛽 = 0, and this solution coincides with the solution given by FOCs. Moreover,
in Section D.1.5 we show that the solution to the sequential monopoly model exists for 𝛽 = 1.
Lemma OA-3 shows that the solution from FOC as 𝛽 → 1 corresponds to the solution obtained in
Section D.1.5. Therefore, the solution to FOC converges to the corner cases of 𝛽 = 0 and 𝛽 = 1. The
continuity of FOCs implies that the solution exists for any 𝛽 ∈ (0, 1). Since this solution is given by
the FOC, it is in the interior. □

D.3 Auxiliary Lemma on Cost and Revenue Functions

Lemma OA-6. The condition 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 is equivalent to 𝜕(𝑚𝑐(𝑞)−𝑐(𝑞))
𝜕𝑞 > 0. The condition

𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) < 0 is equivalent to 𝜕(𝑚𝑟(𝑞)−𝑝(𝑞))
𝜕𝑞 < 0

Proof. Consider the term 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞):

𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) =
𝜕
(
𝑐′(𝑞)𝑞

)
𝜕𝑞

.

Given 𝑐(𝑞) = 𝐶(𝑞)/𝑞. We can write 𝑐′(𝑞)𝑞 as

𝑐′(𝑞)𝑞 =
𝐶′(𝑞)𝑞 − 𝐶(𝑞)

𝑞2 𝑞

= 𝐶′(𝑞) − 𝐶(𝑞)
𝑞

= M.cost − Avg.cost.

So, 𝑐′′(𝑞)𝑞+𝑐′(𝑞) > 0 corresponds to the condition that the difference between marginal and average
costs increases with 𝑞. Since 𝑐′(𝑞) ≥ 0, 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 implies that 𝑚𝑐(𝑞) is increasing with 𝑞.
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Next, consider the term 𝑝′′(𝑞)𝑞 + 𝑝′(𝑞):

𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) =
𝜕
(
𝑝′(𝑞)𝑞

)
𝜕𝑞

.

The difference between marginal and average revenue is

𝜕(𝑝(𝑞)𝑞)
𝜕𝑞

− 𝑝 = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) − 𝑝(𝑞) = 𝑝′(𝑞)𝑞.

Hence, if 𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) < 0, this implies that the difference between marginal and average revenue
decreases with 𝑞. Since 𝑝′(𝑞) ≤ 0, 𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) < 0 implies that 𝑚𝑟(𝑞) is decreasing with 𝑞. □

D.4 Loglinear Version of the Model

We solve the simultaneous bargaining model with log-linear costs and demand:

𝑐(𝑞) = 1
1 + 𝜓

𝑞𝜓 (OA.11)

𝑝(𝑞) = 𝑞
1
𝜂 (OA.12)

Solving the first-order condition for output in the monoponistic conduct case (U-FOC) results in
the factor supply curve 𝑤 = 𝑞𝜓. Solving the first-order condition for output in the monopolistic
conduct case (D-FOC) results in the factor demand curve 𝑤 = 𝑞

1
𝜂 (𝜂+1

𝜂 ). The joint-profit-maximizing

output level is found by equating marginal costs to marginal revenue, which results in 𝑞=(1+𝜂
𝜂 )

1
𝜓− 1

𝜂 .
Solving the bargaining problem (B-FOC) and setting it equal to the monopsonistic and monop-

olistic cases to find the intersection of the two output-buyer power curves results in the output-
maximizing bargaining parameter

𝛽∗ = ( 1 + 𝜂

1 + 𝜓
− 𝜂)−1.

Equilibrium existence under monopolistic bargaining

Solving the first-order conditions for the monopolistic bargaining problem, 𝑞(𝛽), is given by

𝑞𝑚𝑝𝑙 = (
𝜓 + 1
𝛽𝜂

) + 1 + 𝜓)
1

𝜓− 1
𝜂 .

Given that 𝜓 − 1
𝜂 = 5

12 < 1 in our numerical example, equilibrium existence requires

(𝜓 + 1
𝛽𝜂

) + 1 + 𝜓 > 0.
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Hence, it must hold that
𝛽 >

−1
𝜂
.

In our numerical example, this condition is satisfied for 𝛽 > 1
6 , so the monopolistic equilibrium is

defined only for this range of bargaining parameters.

Equilibrium existence under monopsonistic bargaining

Solving the FOCs of the monopsonistic bargaining model delivers the following 𝛽(𝑞) relationship:

𝛽 =
𝑞𝜓 − 𝑞

1
𝜂

𝑞
1
𝜂 + 𝑞𝜓

1+𝜓

.

Given that 𝜓 > 0 and 𝜂 < 0, output is well-defined for any 𝛽 > 0. Hence, the monopsonistic
equilibrium always exists for the range of bargaining parameters we consider.

D.5 Limits in the Numerical Example

When we apply the bounds for existence from proposition OA-2, the limit of the monopoly model
corresponds to

lim
𝑞→0+

− 𝑝′(𝑞) 𝑞
𝑝(𝑞) − 𝑐(𝑞) = lim

𝑞→0

1
𝜂 𝑞

1
𝜂

𝑞
1
𝜂 − 1

1+𝜓 𝑞
𝜓
.

Using l’Hôpital’s rule, this limit can be found as

lim
𝑞→0+

−
1
𝜂 𝑞

1
𝜂

𝑞
1
𝜂 − 1

1+𝜓 𝑞
𝜓
= −1

𝜂
.

Since we set 𝜂 = −6, the limit is 1/6.

In the monopsony model, the upper bound is given by the limit:

lim
𝑞→0+

𝑐′(𝑞) 𝑞
𝑝(𝑞) − 𝑐(𝑞) = lim

𝑞→0

𝜓
1+𝜓 𝑞

𝜓

𝑞
1
𝜂 − 1

1+𝜓 𝑞
𝜓

Using l’Hôpital’s rule, this limit can be found as

lim
𝑞→0+

=

1
𝜂 𝑞

1
𝜂

𝑞
1
𝜂 − 1

1+𝜓 𝑞
𝜓
= 0
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E Extension Details

E.1 Nonzero Disagreement Payoffs

Theorem 3. Under monopolistic bargaining, output increases with the buyer’s disagreement
payoff and decreases with the seller’s disagreement payoff, 𝑑𝑞/𝑑𝑜𝑑 > 0 and 𝑑𝑞/𝑑𝑜𝑢 < 0. Under
monopsonistic bargaining, output decreases with the buyer’s disagreement payoff and increases
with the seller’s disagreement payoff, 𝑑𝑞/𝑑𝑜𝑑 < 0 and 𝑑𝑞/𝑑𝑜𝑢 > 0.

Proof. With the disagreement payoffs, the firms’ optimization problem becomes

max
𝑞

𝑝(𝑞)𝑞 − 𝑤𝑞 (Downstream’s problem)

max
𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 (Upstream’s problem)

max
𝑤

[(𝑝(𝑞)𝑞 − 𝑤𝑞 − 𝑜𝑑𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞 − 𝑜𝑢𝑞)1−𝛽] (Bargaining problem)

(OA.13)

which leads to the following FOCs



𝑤 = 𝑝′(𝑞) 𝑞 + 𝑝(𝑞) (D-FOC)

𝑤 = 𝑐′(𝑞) 𝑞 + 𝑐(𝑞) (U-FOC)

𝑤 = (1 − 𝛽)
[
𝑝(𝑞) − 𝑜𝑑

]
+ 𝛽

[
𝑐(𝑞) + 𝑜𝑢

]
(B-O-FOC)

(OA.14)

(B-O-FOC) and (U-FOC) imply that

(1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] = 𝑐′(𝑞)𝑞 + (1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢 .

(B-O-FOC) and (D-FOC) imply that

𝛽[𝑐(𝑞) − 𝑝(𝑞)] = 𝑝′(𝑞)𝑞 + (1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢 .

First, consider the monopsony case. Using the Implicit Function Theorem, 𝑑𝑞/𝑑𝑜𝑢 and 𝑑𝑞/𝑑𝑜𝑑 can
be obtained as

𝑑𝑞

𝑑𝑜𝑢
= −𝑑𝐹/𝑑𝑜𝑢

𝑑𝐹/𝑑𝑞 = − 𝛽

𝑠′(𝑞) and
𝑑𝑞

𝑑𝑜𝑑
= −𝑑𝐹/𝑑𝑜𝑑

𝑑𝐹/𝑑𝑞 =
(1 − 𝛽)
𝑠′(𝑞) ,

where

𝐹(𝑞, 𝑜𝑢 , 𝑜𝑑) = (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞︸                              ︷︷                              ︸
𝑠(𝑞)

−(1 − 𝛽)𝑜𝑑 + 𝛽𝑜𝑢 .
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𝑠′(𝑞) is given by

𝑠′(𝑞) = (1 − 𝛽)(𝑝′(𝑞) − 𝑐′(𝑞)) − [𝑐′′(𝑞)𝑞 + 𝑐′(𝑞)].

We have 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 by assumption. 𝑝′(𝑞) ≤ 0 and 𝑐′(𝑞) ≥ 0, therefore 𝑠′(𝑞) < 0. Hence, this
proves that in the monopsony model, 𝑑𝑞/𝑑𝑜𝑑 < 0 and 𝑑𝑞/𝑑𝑜𝑢 > 0.

Second, consider the monopoly model. The Implicit Function Theorem gives

𝑑𝑞

𝑑𝑜𝑢
= −𝑑𝐹/𝑑𝑜𝑢

𝑑𝐹/𝑑𝑞 = − 𝛽

𝑠′(𝑞) and
𝑑𝑞

𝑑𝑜𝑑
= −𝑑𝐹/𝑑𝑜𝑑

𝑑𝐹/𝑑𝑞 =
(1 − 𝛽)
𝑠′(𝑞) ,

where

𝐹(𝑞, 𝑜𝑢 , 𝑜𝑑) = 𝛽[𝑐(𝑞) − 𝑝(𝑞)] − 𝑝′(𝑞)𝑞︸                       ︷︷                       ︸
𝑠(𝑞)

−(1 − 𝛽)𝑜𝑑 + 𝛽𝑜𝑢 .

𝑠′(𝑞) is given by

𝑠′(𝑞) = 𝛽[𝑐′(𝑞) − 𝑝′(𝑞)] − [𝑝′′(𝑞)𝑞 + 𝑝′(𝑞)].

We have 𝑐′(𝑞) ≥ 0, 𝑝′(𝑞) ≤ 0 and (𝑝′′(𝑞)𝑞 − 𝑝′(𝑞)) < 0, so 𝑠′(𝑞) > 0. This proves that under
monopolistic conduct, 𝑑𝑞/𝑑𝑜𝑑 > 0 and 𝑑𝑞/𝑑𝑜𝑢 < 0. □

For the simple functional forms 𝑐(𝑞) = 1
1+𝜓 𝑞

𝜓 and 𝑝(𝑞) = 𝑞
1
𝜂 , we obtain Equation (OA.15) for

the monopolistic model, and Equation (OA.16) for the monopsonistic model:

𝑞
1
𝜂 (1 − 𝛽 − (

1 + 𝜂

𝜂
)) +

𝛽

1 + 𝜓
𝑞𝜓 − ((1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢) = 0 (OA.15)

𝑞
1
𝜂 (1 − 𝛽) + (

𝛽

1 + 𝜓
− 1)𝑞𝜓 − ((1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢) = 0 (OA.16)

Neither of these equations has a closed-form solution. Hence, we numerically solve these
equations for 𝑞 at given values of 𝜂, 𝜓, and 𝛽. We calibrate 𝜂 = −10 and 𝜓 = 0.25, as before. We
express 𝑞 as a function of the difference between the outside option of the buyer compared to the
outside option of the seller, 𝑧 − 𝑦. We let this difference in disagreement payoffs be uniformly
distributed on the interval [−1/4, 1/4].
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E.2 Cournot Competition

Let there be firms 𝑗 = 1, ..., 𝐽, with
∑𝐽

𝑗=1 𝑞 𝑗 = 𝑄. The firms’ optimization problem becomes


max
𝑞 𝑗

𝑝(𝑄)𝑞 𝑗 − 𝑤𝑞 𝑗 (Downstream’s problem)

max
𝑞 𝑗

𝑤𝑞 𝑗 − 𝑐(𝑞 𝑗)𝑞 𝑗 (Upstream’s problem)

max
𝑤

[(𝑝(𝑄)𝑞 𝑗 − 𝑤𝑞 𝑗)𝛽(𝑤𝑞 𝑗 − 𝑐(𝑞 𝑗)𝑞 𝑗)1−𝛽] (Bargaining problem)

(OA.17)

Compared to the single-buyer version of the model, in which −𝜂 was the firm-level price
elasticity of demand, −𝜂 is now the market-level price elasticity of demand. In the Cournot case,
the residual price elasticity of demand at the firm level becomes 𝜂

𝑠 𝑗
, with 𝑠 𝑗 =

𝑞 𝑗
𝑄 . Hence, the more

competing firms there are in the downstream market, the more elastic residual demand becomes,
and the lower the efficient level of buyer power 𝛽∗. This implies that the more competitive the
downstream market becomes, the more likely it is that the wholesale market is monopsonistic; the
range of bargaining parameters for which equilibrium conduct is monopsonistic increases.

Numerical Example

We simulate the same parametric version of our model used earlier, but with multiple buyers that
compete downstream, à la Cournot. We keep 𝜓 = 0.25 but now set the market-level elasticity
𝜂 = −3, which implies that firm-level demand elasticities are between −3 (if there is a single
downstream firm) to −12 (if there are four equally sized downstream firms). Figure OA-3 shows
the resulting output-buyer power graphs when there are one to four firms per downstream market.
As competition increases, residual demand faced by the buyers becomes more elastic. Hence, the
efficient level of buyer power decreases, and monopsonistic competition is the equilibrium form of
vertical conduct for an increasing range of relative bargaining abilities.

E.3 Multi-Input Downstream Production

E.3.1 Monopoly

In this section, we show how to adjust the bargaining model in the case of a multi-input production
function for the downstream firm. Assume that the downstream firm produces according to the
following CES production function with two inputs:

𝑞 = (𝛼1𝑥
𝜌
1 + 𝛼2𝑥

𝜌
2 )

1/𝜌

For simplicity, we assume that there is no term for productivity. Assume that for the input 𝑥2,
the downstream firm negotiates based on monopsonistic bargaining, and it takes the price of 𝑥1 as
given. In monopolistic bargaining, the downstream firm takes the price 𝑤2 as given and finds the
profit-maximizing quantity. We can write the firm’s demand for 𝑥2 as a function of target output
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quantity 𝑞:

𝑥2(𝑞) =
(
𝛼 𝑗

𝑤 𝑗

) 1
1−𝜌 𝑞((

𝛼1
𝑤1

) 1
1−𝜌 +

(
𝛼2
𝑤2

) 1
1−𝜌

) 1
𝜌

.

The CES function leads to the following cost function:

𝐶𝑑(𝑞) = 𝑞

((
𝛼1
𝑤1

) 1
1−𝜌

+
(
𝛼2
𝑤2

) 1
1−𝜌

)1− 1
𝜌

.

Taking the derivative to find the marginal cost,

𝑐′𝑑(𝑤2) =
((

𝛼1
𝑤1

) 1
1−𝜌

+
(
𝛼2
𝑤2

) 1
1−𝜌

)1− 1
𝜌

,

which is the same as the average cost 𝑐𝑑(𝑤2). With these objects, we can write the firm’s maximiza-
tion problems as

𝜋𝑑(𝑤2 , 𝑞) =
(
𝑝(𝑞) − 𝑐𝑑(𝑤2)

)
𝑞

𝜋𝑢(𝑤2 , 𝑞) =
(
𝑤2 − 𝑐𝑢(𝑥2(𝑞))

)
𝑥2(𝑞).

These problems resemble the problem in the paper with the following exceptions: 𝑤2 in the
upstream firm’s maximization problem shows up in 𝑐𝑑(𝑤1 , 𝑤2) instead of as a simple linear function
in 𝑤2. Similarly, 𝑞 in the downstream firm’s problem shows up as 𝑥2(𝑞) instead of as a simple linear
function. Since 𝑐𝑑(𝑤1 , 𝑤2) is increasing in 𝑤2 and 𝑥2(𝑞) is increasing in 𝑞, having a multi-input
downstream firm does not change the main economics of the problem.

E.3.2 Monopsony

Now we will consider the monopsony model. In the monopsony model, the production function
remains the same, but since the input 𝑥2 is determined by the upstream firm, the downstream firm
will take 𝑥2 as given. Therefore, the firm will solve a constrained optimization problem:

min𝑥1 𝑤1𝑥1 s.t 𝑞 < (𝛼1𝑥
𝜌
1 + 𝛼2𝑥

𝜌
2 )

1/𝜌.
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This will lead to a conditional factor demand conditional on 𝑥2:

𝑥1(𝑞, 𝑥2) =
(
𝛼1
𝑤1

) 1
1−𝜌 ©­­­«

(𝑞)𝜌 − 𝛼2𝑥
𝜌
2(

𝛼1/𝑤𝜌
1

) 1
1−𝜌

ª®®®¬
1
𝜌

.

Similarly, we obtain a conditional cost function:

𝐶𝑑(𝑞, 𝑥2) =
(
𝑞 − 𝛼2𝑥

𝜌
2

) 1
𝜌 ©­«

(
𝛼1

𝑤
𝜌
1

) 1
1−𝜌 ª®¬

𝜌−1
𝜌

+ 𝑤2𝑥2.

Denote the average cost as 𝑐𝑞(𝑞, 𝑤2) = 𝐶𝑑(𝑞, 𝑤2)/𝑞. Taking the derivative to find the marginal cost,

𝐶𝑑(𝑞, 𝑥2) =
(
𝑤1
𝛼1

[
𝑞 − 𝛼2𝑥

𝜌
2
] ) 1

𝜌

+ 𝑤2𝑥2.

Given 𝑥2, the firm will set marginal cost to marginal revenue:

𝑐′𝑢(𝑞, 𝑥2) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞).

Let the solution to this problem be 𝑞𝑑(𝑥2). Now, we can write the firms’ maximization problems as

𝜋𝑑(𝑤2 , 𝑥2) =
(
𝑝(𝑞) − 𝑐𝑑(𝑞𝑑(𝑥2), 𝑤2)

)
𝑞𝑑(𝑥2)

𝜋𝑢(𝑤2 , 𝑥2) =
(
𝑤2 − 𝑐𝑢(𝑥2)

)
𝑥2.

These problems resemble the problem in the paper with the following exceptions: 𝑤2 in the
downstream firm’s maximization problem shows up as 𝑐𝑑(𝑤2) instead of as a simple linear function
𝑤2. Similarly, 𝑞 in the downstream problem appears as 𝑞𝑑(𝑥2) instead of as a linear function 𝑥2.
In this case, we do not see any change in the upstream firm’s cost function. Since both 𝑐𝑑(𝑤2) and
𝑞𝑑(𝑥2) are monotone functions, they do not change the basic mechanisms of the model.
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F Empirical Application Appendix: Unions and Cooperatives

F.1 Labor Unions Application

In our labor unions application, we rely on the estimates for labor supply and demand for U.S.
construction workers from Kroft et al. (2020).

Given that their labor supply model is log-linear, it has the same functional form as our
numerical example from Appendix D.4. Using their notation of firms being indexed as 𝑗, wages
𝑊𝑗 and number of workers 𝐿 𝑗 , their inverse labor supply curve at the firm level is

𝑊𝑗𝑡 = 𝐿𝜃𝑗𝑡𝑈 𝑗𝑡 .

Denoting output as𝑄 𝑗𝑡 , the goods price as 𝑃𝑗𝑡 , and an aggregate price index as 𝑃̄𝑡 , their downstream
residual demand curve is

𝑄 𝑗𝑡 =

(𝑃𝑗𝑡

𝑃̄𝑡

) −1
𝜖
.

Hence, their inverse elasticity of labor supply is 𝜃 and their inverse elasticity of goods demand is 𝜖.
The production function is Leontief in materials and a composite term of labor and capital.

Given that we study wage bargaining on the short term, we treat capital as fixed, which results
in output being proportional to the labor input. Translating their notation into the notation of
Appendix D.4, we have that 𝜂 = − 1

𝜖 and 𝜓 = 𝜃.
We use the 𝛽∗ formula applied to the loglinear example, as worked out in Appendix D.4. Using

the notation from Kroft et al. (2020), this gives

𝛽∗ = (
1 − 1

𝜖

1 + 𝜃
+ 1

𝜖
)−1.

We use the estimated inverse demand elasticity 𝜖 = 0.137 from Table 2, Panel B, and the RDD
estimate for the inverse labor supply elasticity 𝜃 = 0.286 from Table 2, Panel A. Plugging these into
the 𝛽∗ formula above results in 𝛽∗ = 0.417.

F.2 Farmer Cooperatives Application

In our farmer cooperatives application, we focus on the setting of tobacco farmers in China, as
analyzed in Rubens (2023). Although Rubens (2023) presents a discrete-choice oligopsony model
in Appendix A1, we take a first-order approximation of this model by modeling loglinear leaf supply
and assuming monopsonistic competition instead. Denoting total leaf production at manufacturer
𝑓 as 𝑀 𝑓 , the leaf price at firm 𝑓 as 𝑃𝑚

𝑓
, an aggregate leaf price as 𝑃̄𝑚 , and a demand residual as 𝐴 𝑓 ,

leaf supply is given by

𝑀 𝑓 =

(𝑃𝑚
𝑓

𝑃̄𝑚

) 1
𝜓
𝐴 𝑓 .

In equilibrium, the ratio of the marginal revenue product of tobacco leaf 𝑀𝑅𝑃𝑀 over the leaf
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price is equal to one plus the inverse leaf-supply elasticity:

𝑀𝑅𝑃𝑀

𝑃𝑀
= 1 + 𝜓.

Using the preferred GMM specification in the third column of Table 1, Panel B, the MRPM/Leaf
price ratio is estimated at 2.904, which implies an inverse leaf-supply elasticity of 𝜓 = 1.904.

Given that the production function is Leontief in tobacco leaf, cigarette production is propor-
tional to tobacco-leaf usage. We approximate cigarette demand by the same loglinear demand
function used above, denoting cigarette production at firm 𝑓 as 𝑄 𝑓 , the cigarette price as 𝑃 𝑓 , a price
aggregator as 𝑃̄𝑡 , and the inverse demand elasticity as 𝜖:

𝑄 𝑓 =

(𝑃 𝑓

𝑃̄𝑡

) −1
𝜖
.

As an estimate of the cigarette demand elasticity −1
𝜖 , we rely on the estimates of Ciliberto and

Kuminoff (2010). Given that only median own-price elasticities (rather than average elasticities)
are reported, we rely on these median elasticities. We use the estimate of 1

𝜖 = 1.14 from Table 4,
column 6, given that this is one of the two preferred specifications that relies on GMM. Using the
formula above results in 𝛽∗ = 0.916. Alternatively, using the other GMM specification (in column
7) of 1

𝜖 = 1.11 results in a very similar efficient level of buyer power of 𝛽∗ = 0.933.
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G Empirical Application Appendix: Coal Procurement

G.1 Data Sources

Coal-Mine Characteristics and Production Data. For coal mines, we use two datasets: one from
Velocity and one from the Mine Safety and Health Administration (MSHA). The MSHA data
provides information on mine characteristics, including mine type, depth, production technology,
number of employees, and total production. The Velocity data offers ownership information. While
ownership details are also available in the MSHA data, we found it to be unreliable due to the lack
of unique owner IDs, inconsistent spellings, and unaccounted ownership changes.
Coal-Mine Cost Data. We purchased cost information for coal mines from the 2019 Coal Cost Guide
published by Costmine Intelligence. This comprehensive guide provides detailed data on operating
costs, capital costs, labor requirements, and equipment expenses for different mining technologies
used in the United States and Canada. It includes information on surface and underground
mining methods, processing costs, and transportation costs. Additionally, the guide offers insights
into regional variations in mining expenses, coal quality adjustments, and other factors that impact
overall production costs. We combine this data with data from BLS data to obtain wage information
for coal mine workers at the zip-code and county levels.
Power-Plant Characteristics, Cost and Generation Data. For data on power plants, we rely
on data from Velocity Suite, which compiled data from EIA 860, EIA 906, EIA 923, NERC 411
forms, EPA, as well as from their own proprietary research. We use five different data sources
from Velocity. The first dataset is at the month-generator level and includes the universe of
all generators in the U.S., capturing characteristics such as age, fuel type, boiler type, capacity,
location, ISO region, installation date, operating status, ownership and regulation status of the
owner. Velocity collects this data from various public sources and their proprietary research. The
second dataset provides hourly generation data for fossil fuel generation units, sourced from the
EPA’s CEMS database, which includes details on generation, fuel usage, heat rate, and emissions.
The third dataset contains monthly plant-level data, offering information on plant characteristics
and monthly generation by fuel type, compiled from the EIA-923 form. The fourth dataset is hourly
load data for ERCOT, sourced directly from ERCOT’s website. Finally, the fifth dataset consists of
hourly generation data for generation units in ERCOT, obtained from the 60-Day SCED Disclosure
Report provided by ERCOT.
Coal Transaction Data[2005-2015]. Velocity Suite provides two datasets related to coal transac-
tions between power plants and coal mines. The first dataset is transaction-level, where each record
includes coal mine and plant IDs, quantity shipped, FOB price, transportation price, contract infor-
mation (ID and duration), and coal characteristics (ash, sulfur, and type). Most of the information
in this dataset comes from the EIA-923 form, and Velocity augments this data with FOB prices
obtained from railroad waybills. The second dataset focuses on coal routes and includes leg-level
transportation information, such as the mode of transport (railroad, truck, vessel), carrier details for
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railroads, costs, and routing points. This data is sourced from waybills and Velocity’s proprietary
research.
Coal Transaction Data [1979-2000]. This dataset provides historical information on coal transac-
tions and contracts from 1979 to 2000, sourced from the EIA’s Coal Transportation Rate Database.
It includes details on transportation rates, contract terms, and other relevant information about
coal shipments during this period. We use this dataset to obtain historical information on contract
types and duration.

G.2 Hourly Generation Construction

Since we estimate Cournot competition for every hour, we must observe hourly generation data of
all generators operating in ERCOT. This data is sourced from three main datasets: (i) the CEMS
database of hourly generation from the EPA, (ii) the ERCOT 60-day hourly generation report, and
(iii) EIA monthly generation data at the plant-fuel level. The CEMS data cover all fossil-fuel
generation units subject to environmental regulations but exclude renewables and other plants
not regulated under these standards. For renewables, we rely on unit-level data from the ERCOT
60-day generation report. For a small subset of units without hourly generation data from either
source, we use EIA Form 923 to obtain monthly generation information and assume that monthly
generation is uniformly distributed across hours within the given month.

G.3 Capacity Estimation

Power Plants

We calculate these capacities separately for fossil-fuel power plants and other generation sources.
For fossil fuel power plants, we obtain capacity factor information by fuel type from the GADS
database, calculated based on the maintenance frequency of power plants using different fuel types.
In our analysis, these capacity factors are applied uniformly across all hours; we do not account for
strategic maintenance timing, as this involves a complex, dynamic problem that is beyond the scope
of this study. The effective capacity of each unit is thus determined by multiplying its capacity
factor by its nameplate capacity.

For solar, wind, hydroelectric, geothermal, other renewables, and nuclear power plants, we
calculate capacity factors based on their generation, as these are zero-marginal-cost generators, and
their actual generation should reflect their availability to produce electricity. For these generators,
we compute a unit-level capacity factor by averaging their generation within a given month-hour-
weekend/weekday bin and dividing it by their nameplate capacity. Multiplying this capacity factor
with the nameplate capacity provides the effective of the generator by hour type.

Coal Mines

Data on coal mine capacity are collected by the EIA and has been used in prior research. However,
the EIA no longer makes this data available to researchers. Consequently, we infer mine capacity
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from production data. For each year, we define a mine’s capacity as the maximum historical
production observed at that mine up to that year. This approach makes mine capacity time-
varying, as it reflects changes in production over time.

G.4 Heat Rate Calculations and Coal Weight Conversion

To determine the cost of fossil-fuel generators, we calculate their heat rate annually by dividing
their total MMBtu fuel consumption by their total electricity generation. This heat rate is assumed
to remain constant throughout the year. To estimate the cost per MMBtu, we multiply the inverse
of the heat rate by the per-MMBtu cost of coal.

To convert coal quantities from short tons to MMBtu, we calculate an annual conversion factor
by dividing the total coal production (in short tons) by the total heat content of coal produced
during the same year. This conversion factor is then assumed to remain constant throughout the
year.

G.5 Disagreement Payoff Estimation

Coal Mines

We assume that the disagreement payoff of mining firms equals the profit from sales to all other
firms, implying that if a negotiation fails, the coal mine will not produce the quantity that is
negotiated. We think this assumption is reasonable because for mining firms, each transaction is
small relative to total capacity as mining firms transact with many partners.

Power Plants

For power companies, the assumption of no production in the event of a disagreement is unrealistic,
as coal power plants contribute significantly to the total capacity of power firms and require
substantial upfront capital investments. Thus, it is more reasonable to assume that coal power
generators would continue operating even if negotiations fail. In such cases, we assume that the
power company would procure coal from the spot market. However, the spot market is volatile,
and delivery is not guaranteed. Given the assumption that power companies are risk-averse, as
supported by Jha (2022), it is necessary to account for disutility from uncertainty. To address this,
we calculate the yearly mean spot price of coal sold from the same basin and coal type, along with
its standard deviation. Using a reduced-form approach, we model risk aversion by assuming that
power plants perceive the effective spot market coal price as the mean spot price plus one standard
deviation.

G.6 Cournot Demand Estimation Details

As described in the main text, we assume a Cournot competition model with strategic fringe firms.
We estimate a separate and independent Cournot competition model in each hour type, which is
a month-hour-weekday/weekend combination. We assume that all regulated power plants and
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firms whose total capacity is below 5% are fringe firms in a given year. With these assumptions,
modeling downstream competition requires the consumer demand and supply of fringe firms
every hour type.

We assume that total demand is fully inelastic in the short run and calculate the inelastic demand
by averaging the actual observed demand in each hour type. We assume that this average is the
expected demand during the bargaining between upstream and downstream firms. For fringe
supply, we first calculate the cost curve of each fringe firm and aggregate them to the industry
industry level. We assume that fringe firms supply a quantity in a given hour such that the price
equals the marginal cost.

Subtracting this fringe supply curve from the inelastic demand yields the industry demand
curve faced by strategic firms. The analysis then follows standard Cournot competition modeling,
where each strategic firm faces a residual demand curve determined by the industry demand minus
observed generation from other strategic firms.

G.7 Estimation Algorithm

Consider a grid of potential wholesale coal prices, denoted by [0, 𝑤̄]. The following steps outline a
procedure to compare the resulting equilibria across these different prices:

Monopsony

1. First, calculate how much quantity will be supplied by the upstream firm at any price 𝑤.
Denote this 𝑞𝑚𝑠(𝑤)

2. Calculate upstream profit as a function of 𝑤 and 𝑞𝑚𝑠(𝑤)

3. Calculate downstream profit as a function of 𝑤 and 𝑞𝑚𝑠(𝑤). Doing this is a bit nuanced.
To find the downstream profit, we need to construct the cost curve of the downstream firm
for a given 𝑞𝑚𝑠(𝑤). Since in the monopsony model, the upstream firm chooses the quantity;
we assume that the downstream firm will use that quantity in production. The way we
operationalize this is as follows:

• We construct the supply curve of all other power plants in the power company’s port-
folio. We take that as given, and it is not affected by the negotiation between coal mines
and the power company.

• We also take as given the prices and quantities, if any. This, together with the bullet
above, constructs the supply curve from all inputs other than the one negotiated with
the mining company.

• We assume that the quantity supplied by 𝑢, 𝑞𝑚𝑠(𝑤), is allocated to each coal generator
in the portfolio of the power company proportionally to their capacity. For example, the
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downstream quantity is 100 tons, and we have two coal power plants, A and B, whose
capacity is 50 tons and 200 tons, respectively, we assume that 20 tons will go to plant
A and 80 tons will go to plant B. This will matter to the extent that plant A’s heat rate
is different than that of plant B. If their heat rates are the same, this is without loss of
generality.

• We further assume that the coal quantity is distributed uniformly throughout each
hour of the day. For example, there are 8,760 hours in a given year, so plant A will have
20/8,760 tons of coal to use in a given hour. This assumption ignores the optimal in-
tertemporal allocation of limited coal quantity over the course of the year. For example,
if coal is limited, Plant A might want to use all of it when the price is high.

• With these steps, we now have the tons of coal allocated to each plant in a given
hour. The downstream firm takes as given that the allocated coal is used for electricity
generation under any market conditions. Then, it optimizes the production of a la
Cournot competition for the rest of its portfolio.

4. Now we have the profits as a function of wholesale prices for both parties. Construct the
Nash product.

5. For each 𝛽, find 𝑤 that maximizes the Nash product. This gives us 𝑞𝑚𝑠(𝛽) and 𝑤𝑚𝑠(𝛽).

Monopoly

1. In the monopoly setting, calculate how much quantity will be demanded by the downstream
firm. To find this quantity, take 𝑤 as given and construct the downstream firm’s supply
curve. Solve for the Cournot model to calculate the quantity produced by firm 𝑑 and the
corresponding coal input demand of 𝑑 from 𝑢, 𝑞𝑚𝑝(𝑤).

2. Given 𝑞𝑚𝑝(𝑤) and 𝑤, find the upstream profit.

3. Construct the Nash product:

4. For each 𝛽, find 𝑤 that maximizes the Nash product, which gives us 𝑞𝑚𝑝(𝛽) and 𝑤𝑚𝑝(𝛽).

Use the intersection of 𝑞𝑚𝑝(𝛽) and 𝑤𝑚𝑝(𝛽) to find 𝛽∗ and 𝑞∗. Eliminate 𝛽𝑚𝑠 and 𝛽𝑚𝑝 values such
that 𝑞𝑚𝑝(𝛽) and 𝑤𝑚𝑝(𝛽) are above 𝑞∗ to apply our conduct criteria. Finally, find the 𝛽 value and
vertical conduct that rationalize realized quantity 𝑞 and wholesale price 𝑤 in the data.
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H Additional Tables

Table OA-1: Summary of limit cases for 𝛽

Case Equilibrium Condition Explanation

FOC Cons. Max FOC Cons. Max
Sim. MP, 𝛽 = 1 𝑚𝑟(𝑞) = 𝑐(𝑞) 𝑚𝑟(𝑞) = 𝑐(𝑞) (D-TIOLI) (D-TIOLI)
Sim. MP, 𝛽 = 0 – – – –
Sim. MS, 𝛽 = 1 – – – –
Sim. MS, 𝛽 = 0 𝑚𝑐(𝑞) = 𝑝(𝑞) 𝑚𝑐(𝑞) = 𝑝(𝑞) (U-TIOLI) (U-TIOLI)
Seq. MP, 𝛽 = 1 – 𝑚𝑟(𝑞) = 𝑐(𝑞) – (D-TIOLI)
Seq. MP, 𝛽 = 0 𝑚𝑟(𝑞) = 𝑤 𝑚𝑟(𝑞) = 𝑤 (D.M) (D.M)
Seq. MS, 𝛽 = 1 𝑚𝑐(𝑞) = 𝑤 𝑚𝑐(𝑞) = 𝑤 (C.M) (C.M)
Seq. MS, 𝛽 = 0 – 𝑚𝑐(𝑞) = 𝑝(𝑞) – (U-TIOLI)

Notes: This table summarizes the equilibrium of monopsonistic and monopolistic bargaining in the limit cases
separately using FOCs and from the constraint maximization problems. We use the following abbreviations:
"D-TIOL" (downstream take-it-or-leave-it) and "U-TIOL" (upstream take-it-or-leave-it), "D.M." (double marginal-
ization), "C.M." (classical monopsony). "–" denotes that equilibrium does not exist.
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Table OA-2: Key Notation Used in the Model

Mining

𝑞𝑐
𝑖

Coal-mine 𝑖 output (short tons)
𝑙𝑖 Labor hours used at mine 𝑖

𝑚𝑖 Intermediate inputs at mine 𝑖

𝜃(𝑖) Mine type for mine 𝑖

𝛾𝜃(𝑖) Labor-material ratio by mine type
𝜔𝑖 Mine 𝑖 productivity shifter
ℎ𝑖 Hourly wage at mine 𝑖

𝑝𝑚
𝑖

Material cost at mine 𝑖

𝜆𝑖 Coal-weight-to-MMBtu conversion
𝑐𝑖 Marginal cost at mine 𝑖

𝑐𝑖𝑢 Mine 𝑖 cost in upstream 𝑢

𝑘𝑖𝑢 Capacity of mine 𝑖 in upstream 𝑢

𝑐𝑢 Vector of costs for upstream 𝑢

𝑘𝑢 Vector of capacities for upstream 𝑢

𝐶𝑢(𝑄) Upstream cost curve
𝑄𝑢 Total coal output of upstream 𝑢

Power

𝑄𝐷
𝑡 Electricity demand in hour 𝑡

𝑄fr
𝑡 Fringe supply in hour 𝑡

𝑄st
𝑡 Strategic supply in hour 𝑡

𝑃𝑡 Price of electricity in hour 𝑡
𝑐 𝑗𝑑 Marginal cost of generator 𝑗 in 𝑑

𝑘 𝑗𝑑𝑡 Capacity of generator 𝑗 in hour 𝑡
𝐶𝑑𝑡(𝑄𝑑𝑡) Downstream cost function
𝑄−𝑑𝑡 Output of other downstream firms

Bargaining

𝐷𝑢 Set of downstream partners of 𝑢
𝑞𝑢𝑑 Quantity traded between 𝑢 and 𝑑

𝑤𝑢𝑑 Coal price between 𝑢 and 𝑑

𝜋𝑢 Profit function of upstream 𝑢

𝜋𝑑𝑡 Period-𝑡 profit of downstream 𝑑

𝑄𝑚𝑠
𝑑𝑡

Monopsonistic downstream quantity
𝑄

𝑚𝑝

𝑑𝑡
Monopolistic downstream quantity

𝛽 Bargaining power parameter
𝑄−𝑑 Total coal output to other partners
𝑄̄−𝑢∗

𝑑𝑡
Disagreement output without upstream 𝑢
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I Additional Figures

Figure OA-1: Average Contract Duration by Signing Year

Notes: This figure presents the average duration of contracts (in years) by the year that the contract was signed.
These data are drawn from EIA’s Coal Transportation Rate Database for the years 1979-2000 as described in G.1.
Signing years prior to 1979 are present due to the associated contract’s overlap with the period of the data.

Figure OA-2: Contract Type Shares by Signing Year

Notes: This figure presents the Share of coal quantity shipped by by year and contract type. These contracts
represent the three main types present in EIA’s Coal Transportation Rate Database for the years 1979-2000 as
described in G.1.
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Figure OA-3: Cournot Competition

Notes: This figure presents numerical simulation results showing the relationship between output (𝑞) and buyer
power (𝛽) when there are one to three firms in each downstream market. The residual demand faced by buyers
becomes more elastic as competition increases.
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