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Abstract

A key difference between managers and other production inputs is that managers choose

the other inputs. Modeling management as a Hicks-neutral productivity shifter, which is

a common practice, omits the productivity returns from these input decisions. I illustrate

this through a historical episode in which technology choices were important and managers

plausibly influenced those choices. I study the entry of the first mining college graduates into

coal mine management positions in Pennsylvania. Whereas the Hicks-neutral productivity

effect of these managers was negative and not significantly different from zero, their indirect

productivity effect through electrical locomotive adoption was 3% on average.
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1 Introduction

Managers are crucial drivers of firm performance. The standard practice in the literature on

management and productivity is to consider management as a Hicks-neutral productivity shifter

(Bloom and Van Reenen, 2007; Bloom et al., 2017). In this article, I argue that if we do standard

productivity estimation with management as a Hicks-neutral productivity shifter, we miss any

effect of managers on productivity via input choices. This matters because managerial duties often

include the selection of input bundles, for instance through technology choices.

I illustrate this through a historical episode in which technology choices were important and

managers plausibly influenced those choices: the entry of the first mining college graduates into coal

mine management positions in Pennsylvania between 1900 and 1914. This case study combines

three interesting features. First, the arrival of electricity during this time period fundamentally

changed mining technology. Second, the introduction and spread of technical higher education

programs in the U.S.A. provides an important shock to managerial characteristics. Anecdotal

evidence suggests that mining college-educated managers played an important role in the selection

of new electrical technologies. Third, anthracite coal is a nearly homogeneous product, and the

Pennsylvanian anthracite mining industry was unconcentrated at the time. This offers a stylized

setting in which firm performance is determined by physical productivity, which simplifies the

empirical exercise. The broader point made is, however, relevant beyond this case study. In any

setting where managers select input bundles, it is crucial to take these decisions into account when

quantifying the effects of managers on firm performance and productivity.

I assemble a novel mine-level data set that tracks output and input quantities, the educational

background of managers, and detailed technology choices of all anthracite mines in Pennsylvania.

I use this data set to examine how managers with mining college engineering degrees differ from

other managers both in terms of their technology choices and in the total factor productivity

(TFP) of their mines. I start with the technology choices: I focus on the decision of how to
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haul coal to the surface, which is a crucial determinant of mine productivity. There are four

alternative technologies: (i) mules, the traditional technique, (ii) steam locomotives, (iii) electrical

locomotives, and (iv) compressed air locomotives. I find that mining college graduates are 50%

more likely to use electrical locomotives compared to other managers, but not more likely to

use other new or established locomotive types. Using an event study methodology that exploits

the panel structure of the data, I find that the arrival of mining college graduates is followed by

increased electrical locomotive adoption, rather than the other way around. This is also consistent

with historical anecdotal evidence of mining engineering graduates being instrumental in choosing

coal haulage technologies.

Second, I use a production and cost model to estimate the Hicks-neutral effects of mining

college graduates on total factor productivity, taking into account the endogeneity of input choices.

Mines that hire mining college graduates are likely to be different in unobserved ways. I find

that mining college graduates are not significantly different from other managers in terms of

their Hicks-neutral productivity effects. However, the production function estimates also reveal

that electrical locomotives have a higher marginal product compared to the other new haulage

technology, compressed air locomotives, and these are being held fixed when calculating the

Hicks-neutral productivity effects of mining college graduates. I find that by selecting better

locomotives, mining college graduates increased productivity by 3.0%. This comes in addition

to any Hicks-neutral productivity effects these managers might have. Based on the data, I cannot

tell with sufficient certainty whether mining college graduates increased mining productivity or

not, but can tell that the Hicks-neutral productivity estimates are an underestimate of their total

effect on productivity. This holds more in general: as soon as choice variables of managers,

such as technology choices, enter the production function as inputs, the Hicks-neutral productivity

effects of managers do not capture the productivity returns of managers that come from better input

decisions.

Finally, I explore the underlying reasons of why mining engineering graduates differ from other

managers in terms of their electrical locomotive choices. I distinguish three mechanisms. First, the
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productivity-increasing effects of these locomotives could be higher when being operated bymining

college graduates. Second, it could be that mining college graduates operate or acquire electrical

locomotives at a lower cost. Third, mining college graduates may have superior information about

the benefits and costs of electrical locomotives prior to adoption. I find suggestive evidence against

the informational differences channel. I propose a test to distinguish between the differential

benefits and costs channels, but limited statistical power prevents me from being conclusive on this

front.

This article contributes to three sets of literature. First, it builds on the management and

productivity literature, which usually models the effects of managers on firm performance through

their effects on Hicks-neutral productivity (Bloom and Van Reenen, 2007; Bloom et al., 2013,

2017; Adhvaryu et al., 2199). I contribute to this literature by showing that better input decisions

bymanagers are an additional, and potentially large, channel through which they affect productivity,

in addition to their Hicks-neutral productivity effects.

Second, I contribute to the literature on higher education and productivity. Most of the empirical

work in this literature estimates the effects of the educational background of managers on productiv-

ity, profitability, or management practices (Bertrand and Schoar, 2003; Moretti, 2004; Braguinsky

et al., 2015; Braguinsky and Hounshell, 2016). I contribute by showing that technically educated

managers make better technology adoption decisions compared to other managers. In contrast to

related research by Toivanen and Väänänen (2016), Andrews (2021), and Bianchi and Giorcelli

(2020), I focus on the adoption of new technologies, rather on their invention. Although there is a

literature that studies the relationship between higher education and technology adoption (Wozniak,

1984, 1987; Lleras-Muney and Lichtenberg, 2005), these articles do not focus on managers.

Third, I contribute to a literature that studies the historical role of engineers in fueling tech-

nological change and economic growth. Maloney and Valencia Caicedo (Forthcoming) find that

the historical presence of engineers in the U.S.A. is associated with higher patenting activity and

income today. Hanlon (2020) finds that engineers were central actors in invention during the British

3



industrial revolution.1 An important difference with these articles is that I simultaneously observe

plant-level production data, the presence of engineers in management positions, and technology

choices, which allows investigating the short-term effects of engineer-managers. The resulting

evidence paints a nuanced view of the role played by engineers. On the one hand, engineers’

short-term productivity effects seem rather limited, and they may even have been worse managers

than others based on their Hicks-neutral productivity records. On the other hand, engineers were

instrumental in selecting better technologies, which on their turn fueled productivity growth, which

is consistent with historical accounts of the entry of engineers in extractive industries (Spence,

1970; Hovis and Mouat, 1996).

The remainder of this article is structured in three parts. In section 2, I discuss the historical

background on management and technological change in the early 20th century Pennsylvania coal

mining industry. In section 3, I examine howmanagers with mining engineering degrees differ from

other managers in terms of their technology choices and in terms of the total factor productivity of

the mines under their supervision. Finally, in section 4, I search for the underlying mechanism of

why college-educated engineers differ from other managers in terms of their technology choices.

2 Industry background

The case study in this article is about management and productivity in the Pennsylvanian coal

mining industry between 1900 and 1914. I examine how a new type of manager, the college-

educated mining engineer, affected firm productivity. The purpose of this section is to provide

the necessary background to support the empirical model in the next section. I start by discussing

the business environment of coal firms in order to conceptualize firm performance in this industry,

and technological change in coal mining. Second, I discuss management in this industry, and the

arrival of mining college graduates.

1In contrast to this article, he does not define engineers based on educational background but based on how inventors
refer to themselves.
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Business environment

Demand

All mines in the data set produced anthracite coal, which is a nearly homogeneous product. It was

mainly used for residential heating purposes, and did not require any form of processing before

being used, unlike most other coal types. Coal markets were integrated: 98% of the mines in

Pennsylvania were connected to the railroad network, and on average 84% of mine output was

transported by train to the final markets. The remaining output was partly sold locally at the mine

gate, or re-used as an energy input. Given that there were 322 unique anthracite firms in the

sample, and that coal markets were integrated due to railroads, coal markets were unconcentrated.

Assuming a state-level coal market, the average firm had a market share of barely 0.9%, and the

median firm a share of 0.2%. 95% of firms had a market share below 5%. The largest firm, the

Philadelphia & Reading Coal & Iron Co., had a market share of 20% in 1900, which diminished to

15% by the end of the sample. Combined with the absence of product differentiation, this implies

that coal markets were very competitive. Hence, firm performance was mainly driven by cost-side

efficiency in this industry, rather by market power.

Input markets

Even if coal markets were perfectly competitive, firms could have had monopsony power on labor

markets, especially in geographically isolated locations. Boal (1995) found no evidence for labor

monopsony power in West Virginian coal mines, but Rubens (2022) does for coal miners in Illinois

between 1884 and 1902. Given that mine-level wages and coal prices are not observed in the

context of this article, I will assume that both these prices were exogenous from the perspective

of individual mines in the baseline model. Especially for managers, the core study object of the

article, exogenous wages seem reasonable given the high labor mobility observed in the managerial

background data, and the many outside options available to these workers.
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Costs

The extraction process of an underground coal mine consisted of three main steps. First, a shaft or

tunnel had to be dug to reach the coal seam. Next, coal had to be excavated using either picks and

black powder or using cutting machines. Finally, it had to be hauled back to the surface, usingmules

or underground mining locomotives. Both extraction and haulage were gradually mechanized due

to the invention of cutting machines and underground mining locomotives, as will be explained

more in detail below. Coal firms’ costs differed both because of the cutting and haulage technology

used, and because of differences in total factor productivity.

Technological change

Transporting coal to the surface, ‘coal haulage’, was a crucial part of the coal extraction process.

In a mining journal article, Hodges (1905) asserts that “the problem of getting coal from the

working face to the surface in the most economical way is one of the most serious which the mine

manager has to solve." Mules were traditionally used for haulage, but were gradually replaced by

underground mining locomotives from the 1880s onward. Three main locomotive types existed:

steam-powered, electrical and compressed air locomotives.2

Steam locomotives were invented first, and their usage was already widespread by the start of

the panel: in 1900, 70% of the mines in the data set operated at least one steam locomotive.

They were more efficient compared to mules, but had two main disadvantages. First, using steam

locomotives below the surface implied that their exhaust had to be evacuated from the mine, which

was costly (Schlesinger, 1890). Second, steam locomotives could cause explosions when mine gas

was present (Randolph, 1905). These concerns led to the development of two new locomotive types

for underground usage during the 1890s: electrical and compressed-air locomotives. Electrical

locomotives were a very successful technology, hauling loads at more than twice the speed than

other locomotive types on steep grades, such as inside coal mines, and four times the speed on

2Images of these locomotive types are in the Online Appendix.
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horizontal tracks (Brewer, 1915). A downside was the risk of electrocution when mines got

flooded (Gairns, 1904). Compressed air locomotives were a safe technology, but had to be refilled

frequently, resulting in a limited range. For this reason, they were found to be less economical

compared to electrical locomotives (Schlesinger, 1890).

Electricity was generated by dynamos, which were usually coal-powered. These dynamos

are observed in the data as well, and are almost entirely collinear with the presence of electrical

locomotives. In other words, in order to operate electrical locomotives, dynamos had to be installed.

The same held for compressed-air engines: air compressors which used steam power had to be

installed first. (U.S. Census Bureau, 1895).

Figure 2 depicts the total number of locomotives used of each type in Pennsylvanian anthracite

mines. Mines could use several locomotive types concurrently, and 40% did. In 1900, around

2000 steam locomotives were already being used, whereas barely any of the other two types were

in use. Up to 1904, the number of electrical and air locomotives grew at similar rates, after which

electricity took over to become the standard technology. The share of electrified mines increased

from 10% to 60% between 1900 and 1908. Compressed air engines were never used in more than

40% of the mines.

[Figure 2 here]

Besides the mechanization of the coal hauling process, the coal cutting process was mechanized

as well, using mechanical cutting machines. Cutting machines were introduced in the U.S.A. in

1882 and spread throughout the last two decades of the 19th century. In contrast, the adoption of

electrical underground locomotives mainly started after 1900, so variation in their usage rates is

likely to play a more important role driving productivity growth during the time period considered

in this article.
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Management

I will examine how changes in management affected coal mining productivity, both through tech-

nology choices and through Hicks-neutral productivity. To do so, it is important to first define

management and discuss the tasks and responsabilities of coal mine managers. Second, I discuss

the relevant changes in managerial characteristics observed throughout the sample period.

Tasks and responsabilities

There were three layers of management in coal firms. At the top, there was a ‘general manager’,

often also the firm owner, who was usually based in a city and delegated daily mine management

to ‘mine superintendents’. In a fourth of all mines, mainly the smaller ones, the general manager

would assume the role of superintendent himself. Mine superintendents are the main object of

interest in this article. They had a wide range of responsibilities, including technical procurement,

human resources management, production line design, financial analysis and cost reporting (Ochs,

1992). Investment decisions were made by firm owners, or boards of directors, but were informed

by superintendents. A diary of a superintendent in a Pennsylvania anthracite mine who discusses

infrastructure work to deepen the mine shaft mentions:

“I made up a set of careful estimates for work to be done in the mines during the winter,

[...] , a new barn and alterations at slope. They were approved by the directors, and I

was ordered to proceed with the work."3

Both the technical analysis and financial calculations that underlied technology investment deci-

sions were made by the superintendents (Ochs, 1992). As none of the general managers had an

engineering background, it is logical that they relied on the technically schooled superintendents

when making their technology choices. I present and discuss anecdotal evidence for this delegation

3From https://wynninghistory.com/2017/01/19/life-of-a-coal-mine-superintendent1/
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of technology choices in section 3. Finally, the lowest level of operational management was carried

out by ‘foremen’, two thirds of whom worked below the surface.

Managerial shock: mining college graduates

I rely on the introduction of college-educated mining engineers into coal management positions

as an observable managerial shock. Whereas different continental European nations already had

specialized engineering colleges from the early 18th century onward, American universities such

as MIT and Columbia only started offering engineering degrees during the 1860s (Lundgreen,

1990). Rapid technological change during the second industrial revolution increased the demand

for educated engineers. Lehigh University, which was home to an important mining college in

Pennsylvania, phrased its 1872 mission statement as follows:

“To introduce branches which have been heretofore more or less neglected in what

purports to be a liberal education [...] especially those industrial pursuits which tend

to develop the resources of the country."

Mining engineering was such a ‘neglected’ branch. The first mining college graduates only

started entering managerial positions in the coal mining industry during the early 1900s. The solid

line in figure 1 shows that the share of mines with a college-level mining engineer as superintendent

increased from none in 1898 to 6% in 1914. All these mining engineers graduated from two local

mining colleges: Lafayette College and Lehigh University. The fraction of mines managed by a

graduate with other college degrees, the dashed line, grew from 2 to 6% as well. They slowly

replaced an older generation of non-educated superintendents who had usually entered the mines

around the age of twelve, and worked their way up through the ranks.

The total number of college-level managers was still low. Among the 432 mine superintendents

in the data, only 17 obtained at least a college-level undergraduate degree, of which 7 were degrees

in mining engineering. None of the general managers or foremen in the data set were educated at
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mining colleges. Superintendents managed, however, multiple mines simultaneously, and the data

set comes at the mine level. Of the 604 mines in the data set, 61 were managed by a mining college

graduate at some point, and 17 by a graduate from another college-level degree.

[Figure 1 here]

Why would mining college graduates be different?

Why would college-educated mining engineers have been different in terms of their technology

choices or productivity? First, their abilities and knowledge about mining technology was likely

different due to their education. The rise of electricity was anticipated by mining colleges: by the

year 1900, most mining engineering programs had compulsory courses in electrical engineering

and applied electricity in their junior or senior years. The mining colleges attended by the managers

in the data set offered courses on coal haulage technologies and electrical engines, which could

plausibly have affected their haulage technology choices. More detailed information on the curricula

of the mining colleges present in the dataset is in Online Appendix O.3. Secondly, more technically

able individuals could have self-selected into mining engineering programs. When discussing

differences between mining college graduates and other managers in this article, I will not be able

to distinguish this selection effect due to pre-college differences in managers from the treatment

effect of mining colleges.

Data

Output and inputs

Mine output and input data are obtained from the Annual Report of the Bureau of Mines of

the Department of Internal Affairs of Pennsylvania. It includes 604 Pennsylvanian coal mines

between 1898-1914. I observe annual coal extraction in tons, and its breakdown into output that is

transported over the railroad network, sold locally, and re-used as input. The average number of
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workers employed is observed, as are intermediate inputs, such as powder kegs and coal. All these

variables are measured in quantities. I also observe the town in which the mine was located. A

map with mine locations is in the Online Appendix.

Managerial education

Information on the educational background of managers is obtained by matching the manager

names in the data set with mining college alumni registries. I define mining engineers based on

whether they obtained a mining engineering degree at a college, and will henceforth use the terms

‘mining engineer’ and ‘mining college graduates’ interchangeably. I rely on alumni yearbooks and

college catalogs which cover approximately 90% of mining engineering graduates in the U.S.A.,

99% of mining engineering graduates in non-Western U.S. states, and 100% of mining engineering

graduates in Pennsylvania. More information on this matching procedure and data coverage is in

Appendix Appendix A.

Technology

I observe the usage of mules and each of the three mining locomotive types from 1900 onward.

Restricting the dataset to the period 1900-1914 reduces it to 572 mines and 4,469 observations. A

complication is that the number of locomotives of each type is observed at the county-firm-year

level, whereas all other variables are observed at the mine-year level. The average county in the

data set contained 28 mines, the median county just four. Both attributing locomotives to the

mine-level and mine managers to the firm-level requires ad-hoc weights. I choose to bring the

entire data set to the mine-year level and assign locomotive usage evenly to all mines in a given

county-firm-year pair. As such, it is assumed that upon adopting a locomotive, firms install them

in all mines in a given county. Omitting the observations for which output or labor is either zero

or unobserved reduces the dataset further to 4,079 observations, which is the sample on which the

model is estimated.
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Prices and wages

I obtain daily wages and coal prices from the Annual Report of the Secretary of Internal Affairs of

the Commonwealth of Pennsylvania, for which I observe average miner wages and anthracite prices

between 1902 and 1913. I impute wages and prices for the other years by using the historical price

deflator from the U.S. Department of Labor.4 Further details concerning the data sources and data

cleaning are in Appendix Appendix A.

3 Empirical analysis

The key point of this article is to distinguish the direct productivity effects of managers through

Hicks-neutral productivity from their indirect effects through the selection of inputs. As soon as

choice variables of managers enter the production function as inputs, conditioning on these inputs

when estimating the production function fails to capture managers’ indirect productivity effects

from better input choices.5 In this section, I illustrate this argument for mining college-educated

managers by carrying out an empirical analysis in two steps. I start by examining whether mining

college graduates differed from other managers in their locomotive technology choices, without

distinguishing the reasons why this would be the case; these underlying mechanisms are discussed

in Section 4. Second, I examine the Hicks-neutral effects of managers on total factor productivity,

keeping haulage technologies and all other input choices fixed.

4Accessed through https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-
price-index-1800-

5In Online Appendix O.1, I present a more general model of production and management to illustrate this point.
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Mining engineers and technology adoption

Environment and notation

I study the haulage technology choices of a manager of a coal mine 𝑖 in a year 𝑡. I assume that

managers make decisions on inputs, rather than mine owners, in line with the anecdotal evidence

presented earlier. Mining requires some fixed capital inputs K𝑖𝑡 = (𝐾 𝑠𝑡
𝑖𝑡
, 𝐾𝑒𝑙

𝑖𝑡
, 𝐾𝑎𝑖𝑟

𝑖𝑡
), which is a

vector composed of dummies indicating the usage of at least one steam, electrical or compressed-

air locomotive, denoted 𝜏 ∈ {𝑠𝑡, 𝑒𝑙, 𝑐𝑎}. Besides hauling coal to the surface, some capital was

required to reach the coal seam. These costs are considered as sunk, and hence do not enter the

production function. A third of the mines operated without any locomotive, using mules instead,

meaning that K𝑖𝑡 = (0, 0, 0).

Coal mines produce 𝑄𝑖𝑡 tons of coal per year 𝑡, and require labor inputs 𝐿𝑖𝑡 , and intermediate

inputs 𝑀𝑖𝑡 , besides the capital technologies introduced above. Managers can be alumni from a

mining college, which is indicated by the dummy 𝑋𝑚𝑐𝑖𝑡 ∈ {0, 1}, or another type of college,

indicated by 𝑋𝑜𝑐𝑖𝑡 ∈ {0, 1}. Together, these two dummies compose the vector X𝑖𝑡 . The mine

production function is given by 𝑄𝑖𝑡 = 𝐹 (K𝑖𝑡 ,X𝑖𝑡 , 𝐿𝑖𝑡 , 𝑀𝑖𝑡 , 𝜔𝑖𝑡 ; 𝜷). Total factor productivity is

denoted 𝜔𝑖𝑡 , and the production function is parametrized by 𝜷.

Coal is sold at a price 𝑃𝑡 , labor and intermediate inputs are purchased at prices 𝑊 𝐿
𝑡 ,𝑊

𝑀
𝑡 , and

managers at wagesWX
𝑡 . In the baseline model, I assume that there is a single market for these inputs

in Pennsylvania, and that wages are the same for all mines in a given year.6 The three locomotive

types have mine-level prices WK
𝑖𝑡
, which are all latent but are allowed to differ across mines and

time. All these prices are assumed to be exogenous from each mine’s point of view.

6In Online Appendix O.2, I relax this assumption.
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Choosing locomotives

The key technology choice faced by managers was whether to replace underground steam locomo-

tives by either electrical or compressed air locomotives. As was discussed earlier, the engineering

literature points to the superiority of electrical engines over compressed-air engines in terms of

efficiency, which I also verify empirically in the next section. In order to use compressed-air

or electrical locomotives, an air compressor or electricity generator was required, and both these

power sources and the locomotives had to be purchased, transported, and installed. Hence, the

choice of the locomotive types to be used in year 𝑡 is assumed to be made at time 𝑡 − 1. Given

that coal markets are assumed to be perfectly competitive, I assume that managers make their

input decisions on a mine-by-mine basis. The relevant production unit for which all decisions are

modeled is hence the mine, rather than the firm. I assume that managers choose the combination

of locomotive technologies that minimize expected costs at the mine, subject to the constraint that

a certain coal output 𝑄𝑖𝑡 has to be delivered in every time period. All input prices and output

elasticities are assumed to be observed by the superintendents. As electrical and compressed-air

locomotives were a new technology, their returns may have been private information during at least

a part of the panel. I test for informational differences between managers in section 4.

I assume that intermediate inputs and non-managerial labor can be adjusted flexibly every year.

Labor markets were very flexible and unregulated at the time (Naidu and Yuchtman, 2018). Data

from Illinois on coal labor contracts from the same time period shows that most miners were offered

weekly, semi-monthly or monthly contracts, which is in line with the flexible labor assumption

(Rubens, 2022) . The main intermediate input was coal itself, which was re-used from the firm’s

own output, and could therefore be flexibly adjusted. Every year, superintendents choose the level

of variable inputs that minimize their current costs, taking the presence of locomotives as given.

They choose the combination of locomotives for the next year that minimizes their expected costs,

conditional on the desired output level being produced in that year. Denoting marginal costs as 𝜆𝑖𝑡 ,
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this implies that the manager faces the following choice problem for locomotives:

K𝑖𝑡+1 = argminE𝑡
[
𝑊𝑀
𝑡+1𝑀𝑖𝑡+1 −𝑊 𝐿

𝑡+1𝐿𝑖𝑡+1

− WK
𝑖𝑡+1K𝑖𝑡+1 − 𝜆𝑖𝑡 ((𝑄𝑖𝑡+1) − 𝐹 (𝑀𝑖𝑡+1, 𝐿𝑖𝑡+1,K𝑖𝑡+1,X𝑖𝑡+1, 𝜔𝑖𝑡+1))

]
I assume that productivity follows a first-order Markov process, Equation (1), with a productivity

shock 𝜐𝑖𝑡 that is i.i.d. across mines and over time.

𝜔𝑖𝑡 = 𝑔(𝜔𝑖𝑡−1) + 𝜐𝑖𝑡 (1)

This implies that managers can forecast inputs and productivity in the next period up to the shock

𝜐𝑖𝑡 . Hence, the investment function for all three locomotive types is given by equation (2). Usage

of each locomotive type in year 𝑡 depends on the variable production inputs, productivity and input

prices in year 𝑡, and on the productivity shock 𝜈𝑖𝑡 . The manager’s educational background X𝑖𝑡

enters the locomotive choice model because I allow managers to make different locomotive choices

depending on their education.

𝐾𝜏𝑖𝑡 = 𝑎
𝜏 (𝐿𝑖𝑡 , 𝑀𝑖𝑡 ,X𝑖𝑡 ,W𝑖𝑡 , 𝜔𝑖𝑡 , 𝜈𝑖𝑡) for 𝜏 ∈ {𝑠𝑡, 𝑒𝑙, 𝑎𝑖𝑟} (2)

Comparing superintendents’ capital choices

I implement the locomotive demand function (2) by regressing the usage of each capital type

on managerial education, log productivity, log intermediate inputs, and log labor, and include

both mine and year fixed effects. Total factor productivity is latent, but is estimated in the next

section. The residual 𝑢𝜏
𝑖𝑡
contains all unobserved variation in type-𝜏 locomotive costs and returns.

I include mine and year fixed effects because a part of the costs and returns to each locomotive

type may be due to locational differences between mines, and may also change over time as mining
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technology progressed. In this baseline specification, I rule out that locomotive fixed costsWK
𝑓 𝑡
are

shared across different types, or that their output elasticities depend on each other, which I relax

in Appendix Appendix B. The prices of labor, coal, and intermediate inputs are subsumed into the

year fixed effects as they are assumed not to vary across mines.

𝐾𝜏𝑖𝑡 = 𝛼
𝜏
1𝜔𝑖𝑡 + 𝜶𝜏2X𝑖𝑡 + 𝛼𝜏3 𝑙𝑖𝑡 + 𝛼

𝜏
4𝑚𝑖𝑡 + 𝛿

𝜏
𝑖 + 𝛿𝜏𝑡 + 𝑢𝜏𝑖𝑡 (3)

The coefficients of interest, 𝜶𝜏2 , measure how the usage of type-𝜏 locomotives differ between

mining college graduates, other college graduates, and other managers. In order to interpret these

coefficients as causal effects of managers’ educational backgrounds on locomotive choices, this

educational background needs to be orthogonal to the locomotive return/cost shocks 𝑢𝜏
𝑖𝑡
, which

includes the unexpected productivity shock 𝜈𝑖𝑡 . The opposite causality could hold if mine owners

anticipate acquiring a new locomotive, and hire a mining or other college graduate to carry this out.

Secondly, it could be that the latent locomotive return/cost shocks affect the utility of a manager to

work at mine 𝑖. For instance, if mine 𝑖 experiences a flood, this both increases the cost of installing

an electrical locomotive and may decrease the attractiveness of that mine to a manager. It has to be

noted, however, that many of these shocks will already feature in the mine productivity residual𝜔𝑖𝑡 ,

which is controlled for. In the next two subsections, I will investigate these potential endogeneity

issues. For now, I assume that 𝑢𝜏
𝑖𝑡
is conditionally independent of the presence of college graduates

X𝑖𝑡 .

I estimate equation (3) for each locomotive type using a linear probability model, in which

standard errors are clustered at the superintendent level, as managerial characteristics vary at

this level. I use a discrete choice model as a comparison in Appendix Appendix B. For the

productivity estimates, I rely on the Cobb-Douglas specification of the production model from the

next subsection. The estimates are in panel (a) of table 1. Superintendents with mining degrees are

19.9 p.p. more likely to use electrical locomotives than non-educated managers, which is a relative

increase of 47.8% compared to the average usage rate of electrical locomotives. The increase in
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electrical locomotive usage is statistically significant with a 95% confidence interval between 8.5

and 31.4 p.p.

In contrast, mining college graduates are 14.7 p.p. less likely to use compressed air locomotives,

although this difference is not statistically significant: the air locomotive 95% confidence interval is

[-33.7 p.p.; 4.3 p.p.]. Hence, the difference in electrical locomotive usage between mining college

graduates and non-educated managers is significantly larger than the difference in compressed air

locomotive usage. Mining college graduates are also 4.8 p.p. more likely to use steam locomotives

than non-educatedmanagers, with a 95% confidence interval of [-1.8 p.p.; 11.4 p.p.]. The difference

in steam usage between managers is not significantly above zero, but is significantly smaller than

the difference in electrical engine usage at the 10% significance level.

[Table 1 here]

Event study

Was the arrival of mining college graduates followed by the adoption of electrical locomotives,

or was it the other way around? In order to shed more light on this ordering, I conduct an event

study that makes use of the panel structure of the data. I estimate how changes in superintendent

characteristics in the past and future correlate with changes in the usage of each locomotive type.

Denoting the change in the usage of locomotive type 𝜏 as 𝐴𝜏
𝑖𝑡
≡ 𝐾𝜏

𝑖𝑡
− 𝐾𝜏

𝑖𝑡−1 and the change in

whether the superintendent has a mining college degree as 𝐴𝑚𝑐
𝑖𝑡

≡ 𝑋𝑚𝑐
𝑖𝑡

− 𝑋𝑚𝑐
𝑖𝑡−1, I estimate equation

(4) using up to three years before and after the arrival of a mining college graduate. I still include

year dummies, but not mine dummies as these are differenced out.

𝐴𝜏𝑖𝑡 =

3∑︁
𝑝=−3

𝜸𝜏𝑝𝐴
𝑚𝑐
𝑖𝑡+𝑝 + 𝛿𝜏𝑡 + �̃�𝜏𝑖𝑡 (4)

I again use a linear probability model with standard errors clustered at the superintendent level.

The estimated coefficients 𝛾𝜏𝑝 and their 95% confidence intervals are plotted in figure 3. Panels 3(a)
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- 3(c) plot the estimates for electrical, steam and compressed-air engines, which are the technology

choices of interest. Panel 3(d) does the same, but uses the difference in log labor as the dependent

variable of equation (4), by means of a comparison. Panel 3(a) shows that prior to the arrival of a

mining college graduate, electrical locomotive adoption was not significantly different compared

to mines where no mining college graduate would be hired, and the estimate of this difference is

around 5p.p. The arrival of a mining college graduate was, however, associated with an increase in

electrical locomotive adoption of 40 p.p. one year after the arrival of the mining college graduate,

and the 90% confidence interval lies between 5 and 65 p.p. The absence of a pre-trend in electricity

adoption prior to hiring the mining school superintendents shows that the arrival of mining college

graduates was followed by a change in locomotive usage, rather than being preceded by it.

Panel 3(b) shows the same estimates for compressed-air locomotives, the other new technology:

adoption was similar three years before a mining college graduate arrived, but lower two and one

year before the mining college graduate arrived. Mines with lower air adoption were hence less

likely to hire a mining college graduate. The adoption of compressed air engines increased after

mining college graduates arrived, just as for electrical engines. Steam locomotive adoption, in

panel (c), was not significantly different between mines that hired and did not hire mining college

graduates before the arrival of these graduates. There seems to be an increase in steam adoption

after their arrival, but this is not significantly different from zero in every year, except for the third

year, in which it is borderline significantly positive. Standard errors around this event study are

wide because there is little adoption of steam engines. Labor usage, in panel and 3(d), did not

change significantly after mining college graduates were hired.

[Figure 3 here]

Anecdotal evidence supporting the technology choice mechanism

The finding that the entry of mining college graduates was followed by increased uptake of electrical

locomotives could mean that mining college graduates decided to reorganize the production process
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and choose better haulage technologies after they arrived, but it could equally be the case that mine

owners anticipated the adoption of electrical haulage technology, and hiredmining college graduates

for this purpose. It is hard to distinguish these two mechanisms solely using the available data, so

I use anecdotal evidence from the arrival of mining engineers in mine management positions to

shed more light on this issue. In his discussion of electrical mining locomotive adoption in Illinois,

mining engineer Leonard V. Newton mentions in 1913 that “the engineering staff of the Madison

Coal Corporation is planning on the installation of tandem locomotives [the parallel usage of two

locomotive types, in this case steam and electrical locomotives], their claim being that this will

avoid enlarging their track gauge" (Newton, 1913). This suggests that the initiative of locomotive

adoption lied with the mining engineers. In the context of a different mining industry, copper

mining, Spence (1970) argues the following about mining engineers, based on historical anecdotal

evidence:

“The next step was to convince the mine promoters and miners alike that scientific

methods were so superior to empirical development that engineers should supervise

every step from claim surveying to smelting.” (Spence, 1970)

This again suggests that the initiative for technical change lied with the engineers, not the mine

owners. Along the same lines, in his business history of the South Canyon coal mine in the early

1900s, which is based on archival records, Twitty (2017) mentions that “The directors were not

experienced in mine development, and so hired experts who were” and that “the manager faced

an uphill battle of educating the officers and board, so they had context to understand his regular

reports to them”. About the design of the haulage infrastructure in the coal mine, he notes the

following:

“The engineers used 60-pound rails (weight per yard of rail) spaced 3’ apart, and

charted a very gentle 3.5 percent climb. [...] they could have run regular narrow-gauge

trains on the line, but opted for an electric locomotive [...]"
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All of this evidence is in line with managers/mining engineers taking the initiative to adopt new

technologies, such as electrical locomotives, rather than the mine owners. It is unsurprising

that the largest differences between managers applied to electrical locomotives: electricity was a

new technology, and electricity experts were rare. In the Transactions of the Institute of Mining

Engineers from 1905, it is noted that:

"The machinery used with compressed air so closely resembles that used with steam,

that mechanics familiar with the one have little to learn in managing the other. [...] men

competent to manage pneumatic plants are easily obtained, while experts in electricity

are scarce." (Randolph, 1905)

Mining engineers and Hicks-neutral productivity

The previous section established that mining engineers were more likely to use and adopt electrical

locomotives compared to other managers. In this section, I examine whether mining engineers also

increased total factor productivity, keeping technology choices and all other input quantities fixed.

This is the Hicks-neutral productivity effect of management, which does not take into account

different technology choices by managers.

Production model

In order to study the productivity effects of managers, a functional form for the production function

𝑄𝑖𝑡 = 𝐹 (K𝑖𝑡 ,X𝑖𝑡 , 𝐿𝑖𝑡 , 𝑀𝑖𝑡 , 𝜔𝑖𝑡 ; 𝜷) needs to be specified. I start by studying the Hicks-neutral

productivity effects of mining college graduates by using a Cobb-Douglas production function,

which in logarithms is given by Equation (5). The output elasticities of all inputs 𝜷 are assumed

to be constant across firms and over time. The coefficient 𝜷𝑋 = (𝛽𝑚𝑐, 𝛽𝑜𝑐) contains the output

elasticities of mining college and other college graduates. The productivity residual is assumed to

be a scalar and is denoted 𝜔𝑖𝑡 . Given that the production function has the Cobb-Douglas form, the
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Hicks-neutral productivity effect of any input is given by the corresponding output elasticity. For

instance, the output elasticity of mining college graduates, 𝛽𝑚𝑐, measures the effect of having a

mining college graduate manager on output, keeping all other inputs fixed.

𝑞𝑖𝑡 = 𝛽
𝑙 𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝜷𝑘K𝑖𝑡 + 𝜷𝑥X𝑖𝑡 + 𝜔𝑖𝑡 + 𝛽𝑡𝑡 + 𝜀𝑖𝑡 (5)

Besides having a Hicks-neutral effect on productivity, mining college graduates could also affect

productivity by changing the output elasticities of the other inputs, which is ruled out using the

Cobb-Douglas specification. I will allow for such directed effects ofmanagement in themechanisms

discussion in Section 4. I also rule out that locomotives have directed effects, which I relax in

Online Appendix O.2. I allow for measurement error in output, which is denoted 𝜀𝑖𝑡 . I add a linear

time trend, captured by the coefficient 𝛽𝑡 , in order to allow for changes in productivity over time

due to reasons outside of the model. Labor and intermediate inputs are continuous variables and

measured in quantities: labor is measured by the average number of workers during the year, and

intermediate inputs by the tons of coal used. Black powder was also used as an intermediate input,

but it was purchased and brought by the miners, rather than by the firms, and is therefore assumed

to be a perfect complement to workers, and excluded from the firms’ cost function.

Input choices: timing assumptions

In order to estimate the Hicks-neutral productivity effects of managers, the production function

needs to be identified. I follow the literature on production function estimation by imposing timing

assumptions on the input choices (Olley and Pakes, 1996; Ackerberg et al., 2015). It was already

assumed in section 3 that labor and intermediate inputs are variable and static inputs, meaning that

they can be flexibly adjusted in a every time period and only affect current profits. Locomotives

are, in contrast, assumed to be fixed inputs, which have to be chosen one year ahead. Variable input

and technology choices are made by mine managers. The objective functions of the managers and

mine owners are hence assumed to be aligned, which is in line with historical evidence (Hovis and
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Mouat, 1996).

Managers are, in contrast, selected by themine owners. I allow for adjustment costs inmanagerial

selection: given that mine superintendents, and especially mining college graduates, were scarce,

there was probably some search friction on the market for managers. Managers earn a wageWX
𝑡

that depends on their educational background. Each year, the owner of mine 𝑖 chooses a mine

superintendent with educational background X𝑖𝑡 for the next year, by minimizing the expected cost

of each mine. Online Appendix O.1 contains a more detailed model of howmanagers choose which

mine to join.

Output elasticities of the variable inputs

I start with the identification of the output elasticities of the variable inputs. Given that both input

and goods prices are assumed to be exogenous to firms, and using cost minimization, it can be

shown that the output elasticities of labor and intermediate inputs are equal to their revenue shares

(Foster et al., 2008). In order to implement such an approach, sales and input expenditure needs

to be observed, but I only observe output and input quantities. However, under the assumption

that coal prices and input prices are homogeneous across firms in each given year 𝑡, the revenue

shares can be calculated using annual average wages and coal prices in the Pennsylvanian anthracite

industry.7 The revenue shares of labor and materials are given by 𝑊𝐿
𝑡 𝐿𝑖𝑡
𝑃𝑡𝑄𝑖𝑡

and 𝑊𝑀
𝑡 𝑀𝑖𝑡
𝑃𝑡𝑄𝑖𝑡

. I multiply

the daily wages with the average number of days worked in the mines to get an annual wage bill,

and multiply the coal price with the amount of coal consumed to get intermediate input costs. I

estimate the output elasticity of labor and materials as the median revenue share of each input, as

in Collard-Wexler and De Loecker (2016).


𝛽𝐿 = med[𝑊

𝐿
𝑡 𝐿𝑖𝑡
𝑃𝑡𝑄𝑖𝑡

]

𝛽𝑀 = med[𝑊
𝑀
𝑡 𝑀𝑖𝑡
𝑃𝑡𝑄𝑖𝑡

]

7In contrast, in Online Appendix O.2, I use an approach that does not impose homogeneous input and output prices.
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I block-bootstrap the standard errors within mine blocks with 250 draws to get standard errors

around these median revenue shares. The results are in Table 2(a): the output elasticities of labor

and materials are 0.677 and 0.090, respectively.

[Table 2 here]

Output elasticities of the fixed inputs

Second, I discuss the identification of the fixed inputs’ output elasticities. This is crucial, because

the main objective of this section is to estimate the Hicks-neutral productivity effects of mining

college graduates. In contrast to the variable inputs, the revenue share approach cannot be used

to recover the output elasticities of managers and locomotives. Simply regressing output on

mining college graduates and locomotives would require the assumption that locomotives and

managers are randomly assigned across mines independently of productivity levels, which is a

strong assumption. In order to identify the output elasticities of the fixed inputs, I therefore rely on

the timing assumptions made above. I impose a linear specification for the productivity transition

from Equation (1), which results in Equation (6), with serial correlation 𝜌 and unexpected random

productivity shocks 𝜐𝑖𝑡 . This is in the spirit of Blundell and Bond (2000) and Shenoy (2021). In

Online Appendix O.2, I allow for a more flexible first-order Markov process.

𝜔𝑖𝑡 = 𝜌𝜔𝑖𝑡−1 + 𝜐𝑖𝑡 (6)

Taking 𝜌 differences of the production function results in the moment conditions in (7), which

are used to estimate the coefficient vector (𝜷𝑘 , 𝜷𝑥 , 𝛽𝑡 , 𝜌). In line with the earlier made timing

assumptions, the key identifying assumption is that mining engineers and locomotives are chosen

prior to the arrival of the transient productivity shock 𝜐𝑖𝑡 and the change in measurement error 𝜀𝑖𝑡 ,

whereas labor and intermediate inputs are chosen afterwards. I use the lagged instruments up to
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only one time lag.

E
[
𝜐𝑖𝑡 + 𝜀𝑖𝑡 − 𝜌𝜀𝑖𝑡−1 |



K𝑖𝑡

X𝑖𝑡

𝑙𝑖𝑡−1

𝑚𝑖𝑡−1

𝑡



]
= 0 (7)

The main advantage of this production function identification strategy over ‘control function’

approaches that rely on inverting input demand, as in Ackerberg et al. (2015), is that the latter either

requires that locomotive and manager prices are observed, which they are not, or that they are

serially uncorrelated, which is unlikely. The auto-regressive productivity model does not require

these assumptions. A drawback of Equation (6) is that it does not allow for productivity to depend

on cumulative past output, which would be the case if learning by doing or increasing marginal

costs with mine depth are important. I discuss these types of productivity dynamics in Appendix

Appendix B.

Results

The estimated output elasticities of the fixed inputs using the auto-regressive estimator are in column

(III) of Table 2(b). The coefficient on mining college graduates is -0.046, which corresponds to

an output elasticity of -4.5%, but is not significantly different from zero. Although mining college

graduates are estimated to perform slightly worse than others in terms of Hicks-neutral productivity,

we cannot rule out that they had a small positive Hicks-neutral productivity effect. The coefficient

on managers who graduated from college with a different degree than mining engineering is -0.015

with a confidence interval [-0.244;0.214]. Hence, the data do not allow to say much about the

difference in productivity between these types of managers and non-educated managers.

The estimated locomotive coefficients imply that electrical locomotives increase productivity

by 17.5%, compared to 21.3% for steam locomotives and 8.1% for air locomotives. The output
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elasticities of electrical and steam locomotives were not significantly larger than the output elasticity

of compressed air locomotives. As was discussed before, the engineering literature found that

electrical engines were more efficient compared to compressed air engines, which is consistent

with the magnitudes of the production coefficients, even if a lack of statistical power prevents these

to be distinguished from each other at a high probability. Also, if compressed air locomotives

were cheaper than electrical engines, they could have been the more profitable technology even if

having a smaller effect on productivity. However, this was not the case: Gairns (1904) presents cost

estimates for installing a compressed air locomotive and electrical locomotive in the same mine,

and reports a cost of $7,062 and $6,687, respectively.

[Table 2 here]

For comparison reasons only, I also included the estimates when simply regressing the produc-

tivity residual �̂�𝑖𝑡 ≡ 𝑞𝑖𝑡 − 𝛽𝐿𝑙𝑖𝑡 − 𝛽𝑀𝑚𝑖𝑡 on locomotive and manager dummies and a linear time

trend using OLS, in column (I), and when also including mine fixed effects, in column (II). These

estimates point to small output elasticities of mining college graduates: in the OLS specification,

the mining college coefficient is estimated to be -0.041, which corresponds to an output elasticity

of -4.0%, and it lies significantly below zero. In the model with mine fixed effects, the mining

college coefficient is -0.116 and again significantly negative, which implies that mining college

graduates would decrease Hicks-neutral productivity, at least when not taking into account their

different technology choices.

Implications for the returns to mining college graduates

Using the estimates from the previous two sections, I now compare mining college graduates’

direct, Hicks-neutral, productivity effects with their indirect productivity effects through locomotive

choices. The total productivity effect of mining college graduates is in equation (8). The Hicks-

neutral effect of mining college graduates on productivity is equal to exp(𝛽𝑚𝑐), but this keeps all

other inputs fixed, and hence does not take into account different locomotive choices by mining
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college graduates. In order to estimate the total productivity effect of mining college graduates, the

output elasticity of electrical locomotives exp(𝛽𝑒𝑙) hence needs to be added to the Hicks-neutral

productivity effect, weighted by the difference in electrical locomotive choice probabilities between

mining college graduates and other managers:

E(𝑄𝑖𝑡 |𝑋𝑚𝑐𝑖𝑡 = 1)
E(𝑄𝑖𝑡 |𝑋𝑚𝑐𝑖𝑡 = 0) = 1 + 𝜕𝑄𝑖𝑡

𝜕𝑋𝑚𝑐
𝑖𝑡

𝑋𝑚𝑐
𝑖𝑡

𝑄𝑖𝑡

+
E(𝑄𝑖𝑡 |𝐾𝑒𝑙𝑖𝑡 = 1)E(𝐾𝑒𝑙

𝑖𝑡
= 1|𝑋𝑚𝑐

𝑖𝑡
= 1) + E(𝑄𝑖𝑡 |𝐾𝑒𝑙𝑖𝑡 = 0)E(𝐾𝑒𝑙

𝑖𝑡
= 0|𝑋𝑚𝑐

𝑖𝑡
= 1)

E(𝑄𝑖𝑡 |𝐾𝑒𝑙𝑖𝑡 = 1)E(𝐾𝑒𝑙
𝑖𝑡

= 1|𝑋𝑚𝑐
𝑖𝑡

= 0) + E(𝑄𝑖𝑡 |𝐾𝑒𝑙𝑖𝑡 = 0)E(𝐾𝑒𝑙
𝑖𝑡

= 0|𝑋𝑚𝑐
𝑖𝑡

= 0)

≈ exp(𝛽𝑋)︸   ︷︷   ︸
Direct effect

+
exp(𝛽𝑒𝑙)E(𝐾𝑒𝑙

𝑖𝑡
= 1|𝑋𝑚𝑐

𝑖𝑡
= 1) + E(𝐾𝑒𝑙

𝑖𝑡
= 0|𝑋𝑚𝑐

𝑖𝑡
= 1)

exp(𝛽𝑒𝑙)E(𝐾𝑒𝑙
𝑖𝑡

= 1|𝑋𝑚𝑐
𝑖𝑡

= 0) + E(𝐾𝑒𝑙
𝑖𝑡

= 0|𝑋𝑚𝑐
𝑖𝑡

= 0)︸                                                                ︷︷                                                                ︸
Indirect effect

(8)

Using the imputed choice probabilities for electrical locomotives from the estimated equation

(3), the ‘indirect’ productivity effect from employing a mining college graduate is now 3.0%, which

comes in addition to any Hicks-neutral productivity effect mining college graduates might have.

In comparison, mine output grew by 2.0% per year on average, and output per worker by 1.8%

per year. If the point estimate of the output elasticity of mining college graduates in column (III)

of Table 2 is correct, this would imply that the productivity effect of mining college graduates

was still negative, at -1.5%, but three times less negative than the -4.5% when only considering

Hicks-neutral productivity effects. In the scenario that corresponds to the upper bound of the

95% confidence interval on the mining college graduate output elasticity, these managers have a

Hicks-neutral productivity return of 3.9%, which is 43% lower than their total productivity return

of 6.9%. Due to the limited variation in mining college graduates in the data, there is insufficient

statistical power to be conclusive on whether they increased or decreased productivity. The main

point is that their returns would be underestimated when merely looking at their Hicks-neutral

productivity effects without considering their different technology choices.
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Settings with unobserved technology

The distinction between Hicks-neutral productivity effects and input choices depends on the level

of detail in which input choices are observed in the data. In the context of this article, specific

locomotive technology types (𝐾𝑒𝑙 , 𝐾 𝑠𝑡 , 𝐾𝑐𝑎) are observed, and included in the production function.

I now discuss how less detailed technology data would affect the analysis. A first possibility is

that detailed technology types, in this case locomotive types, are be unobserved, but that their

value would be included in a scalar capital stock 𝐾 ∈ R+. Assume that mining college graduates

are more likely to use electrical locomotives, which have a higher output elasticity than other

locomotive types. Hiring a mining college graduate would then change the production function

from 𝑄 = 𝐾 𝛽𝐾 𝐿𝛽
𝐿

𝑀 𝛽𝑀𝑋 𝛽
𝑋

Ω to 𝑄 = 𝐾𝜃
𝐾

𝐿𝛽
𝐿

𝑀 𝛽𝑀𝑋 𝛽
𝑋

Ω, with 𝛽𝐾 < 𝜃𝐾 , because electrical

locomotives have a higher output elasticity. In such a setting, it would seem as if mining college

graduates have a capital-augmenting effect, although they simply change the unobserved mix of

technology types that compose the capital stock. This type of mechanism features, for instance, in

Van Biesebroeck (2003), which studies technological change in the automotive industry.

Secondly, consider a setting in which locomotives would not be included in the capital stock

𝐾 at all, with a production function 𝑄 = 𝐿𝛽
𝐿

𝑀 𝛽𝑀𝐾 𝛽𝐾 𝑋 𝛽
𝑋

Ω. Different locomotive choices by

mining college graduates would then be measured as a Hicks-neutral productivity effect of mining

college graduates through the output elasticity 𝛽𝑋 , because mining locomotives would be part of the

Hicks-neutral productivity residual Ω. Hence, the distinction between Hicks-neutral productivity

effects of managers and their productivity returns through input choices only exists when these

different input choices enter the production function in some observable way. This can be either

as separate inputs, as is the case in this article, or as a component of the total capital stock, as

discussed in the previous paragraph.
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4 Why did mining engineers select different technologies?

Managers with mining engineering degrees may have made different locomotive choices compared

to other managers for three reasons. They may have had better information about the returns

and costs of each locomotive type before purchasing them, if this information was not common

knowledge, they may have been able to obtain higher returns from electrical locomotives, or they

may have operated electrical locomotives at a lower cost. I now discuss each of these mechanisms

more in detail.

Information

There is a large literature that highlights the importance of imperfect information for technology

adoption. A frequent hypothesis is that education plays a role in shaping managers’ prior beliefs

about technology returns or costs (Rosenzweig, 1995). I test for such informational differences by

comparing the mining college graduate coefficient in equation (3) between two sets of mines that

are likely to have different information about the locomotives. In a first set of mines, locomotives

of a given type have not already been adopted in other mines of the same firm that are located in

different counties. In a second set of mines, they have already been adopted. Assuming that the

information about locomotive returns and costs are shared within a firm, the informational benefit

of a mining school graduate would disappear as soon as the same locomotive type has already

been used within the firm. The results in tables 3(b)-(c) show that this is not the case. Mining

college graduates are 0.083 p.p. more likely to use electrical locomotives for the first time in the

firm, but 28 p.p. more likely to use them if already present in the firm. The difference between

both coefficients is statistically significant. This is the opposite result as what one would expect

under the informational differences mechanism. Moreover, technical studies that demonstrated the

benefits of electrical locomotives were widely published and disseminated by the start of the panel

in 1900, for instance in Schlesinger (1890), which goes against the private information hypothesis.
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[Table 3 here.]

Locomotive returns

Secondly, it is possible that mining engineers were able to increase the returns from electrical

mining locomotives, as measured by the output elasticity of this locomotive type. This hypothesis

can be tested by estimating an interaction term between themining college dummy and the electrical

locomotive dummy, 𝛽𝑥𝑘𝑒. This interaction effect quantifies how the output elasticity of electrical

locomotives differs between mines managed by mining college graduates and those managed by

other managers.

𝑞𝑖𝑡 = 𝛽
𝑙 𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝜷𝑘K𝑖𝑡 + 𝜷𝑥X𝑖𝑡 + 𝛽𝑥𝑘𝑒𝐾𝑒𝑙𝑖𝑡 𝑋𝑚𝑐𝑖𝑡 + 𝜔𝑖𝑡 + 𝛽𝑡𝑡 + 𝜀𝑖𝑡 (9)

I use the same identification approach as above, but now add the product of the electrical locomotive

and mining college dummy, and its lagged value, as instruments in Equation (7). Panel 3(a) reports

that the estimate of 𝛽𝑥𝑘𝑒 is negative, which suggests that mining college graduates did not alter the

returns from electrical locomotives. However, this interaction term is very imprecisely estimated.

There is hence a lack of power to conclude with certainty that different locomotive returns across

managers was not the main driver of the differences in locomotive usage.

Locomotive costs

Finally, it could be that the costs to procure and/or operate electrical locomotives was lower for

mining college graduates, which enters through the termWK
𝑖𝑡
. The maintenance costs of electrical

engines could, for instance, be lower in the presence of a mining engineer. Locomotive costs can

also be non-monetary, such as search costs. It is hard to test for differences in these fixed costs

between different managers, but if locomotive returns and information would not differ between

managers, the difference in choices should come from the cost side. For variable locomotive
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costs, there is a direct test: if mining college graduates would mainly change the variable costs

of locomotives, we would expect mining college graduates to use more electrical locomotives. I

examine this intensive margin by re-estimating equation (3) with the log number of locomotives

as the left-hand side variable, which restricts the sample to the mines in which at least one

locomotive of type 𝜏 was used. The estimates are in panel 1(b). When using at least one electrical

locomotive, mining engineers do not use significantly more electrical locomotives than the other

superintendents, the coefficient is -0.076. However, this coefficient is very imprecisely estimated,

and ranges between -0.38 and 0.23. Insufficient statistical power again prevents to conclude that

mining college graduates did not use more electrical locomotives.

5 Conclusion

A key difference between managers and other production inputs is that they make active decisions

regarding the bundle of inputs used by firms. In this article, I distinguish the ‘direct’ effects of

managers on total factor productivity through Hicks-neutral productivity from their ‘indirect’ ef-

fects through input choices. I illustrate this distinction using a case study of the introduction of

mining college graduates in coal mine management positions in Pennsylvania during the early 20th

century. I find that mining college graduates selected better coal haulage technologies than other

managers. Solely estimating the Hicks-neutral productivity effects of mining college graduates

would lead to missing these indirect productivity gains through better technology choices.
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Table 1: Manager education and technology usage

(I) (II) (III)
1(Elec. loc.) 1(Air. loc.) 1(Steam loc.)

(a) Extensive margin Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) 0.199 0.058 -0.147 0.097 0.048 0.034

1(Other grad.) 0.057 0.093 -0.005 0.022 0.068 0.151

Average usage .468 .303 .754
Observations 4079 4079 4079
Within R-squared .303 .093 .072

log(Elec. loc.) log(Air. loc.) log(Steam loc.)
(b) Intensive margin Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) -0.076 0.155 0.098 0.105 0.284 0.129

1(Other grad.) -0.050 0.143 <0.001 <0.001 0.099 0.062

Observations 1889 1244 3065
Within R-squared .664 .66 .18

Notes: The dependent variables in panel (a) are dummies indicating the usage of each locomotive type in year 𝑡, and
the logarithm of the number of locomotives of each type in panel (b). By taking logs, panel (b) omits mines which do
not use any locomotives of a certain type, which is why the number of observations varies by type. Regressors
include a dummy indicating whether the superintendent attended a mining or other college, and the logs of the

number of employees, intermediate inputs, and total factor productivity, all measured in year 𝑡. Mine and year fixed
effects are controlled for as well. Standard errors are clustered at the superintendent level.
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Table 2: Production function

(I) (II) (III)
(a) Variable inputs Estimate S.E.

Labor 0.677 0.011

Materials 0.090 0.003

log(TFP)
(b) Fixed inputs Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) -0.041 0.039 -0.116 0.041 -0.046 0.043

1(Other grad.) -0.274 0.102 0.135 0.135 -0.015 0.117

1(Elec. loc.) 0.214 0.023 0.111 0.036 0.161 0.027

1(Air loc.) 0.090 0.023 -0.069 0.042 0.078 0.028

1(Steam loc.) 0.271 0.027 0.133 0.057 0.193 0.034

Model OLS FE AR(1)
Observations 4079 4079 3429
R-squared .344 .453 .332

Notes: Panel (a) reports the output elasticities of labor and intermediate inputs using the median factor share
approach, with standard errors being block-bootstrapped with 250 iterations. Panel (b) reports the output elasticities
of managers and locomotives using (I) OLS, (II) mine fixed effects, and (III) the autoregressive productivity GMM
estimator. Column (III) has less observations as lagged values of all inputs and output are needed to estimate this

specification.
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Table 3: Mechanisms

(I) (II) (III)
(a) Different returns Estimate S.E.

1(M.C. grad)*1(Elec. loc.) -0.017 0.094

Observations 3429

1(Elec. loc.) 1(Air. loc.) 1(Steam loc.)
(b) Loc. not yet used Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) 0.083 0.057 -0.060 0.024 0.050 0.062

Observations 2019 2760 1848
Within R-squared .156 .06 .101

1(Elec. loc.) 1(Air. loc.) 1(Steam loc.)
(c) Loc. already used Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) 0.280 0.037 -0.232 0.034 0.014 0.025

Observations 2060 1319 2231
Within R-squared .423 .183 .069

Notes: Panel (a) reports the interaction term coefficient between the mining college graduate dummy and electrical
locomotive dummy in the production function, using the auto-regressive productivity GMM estimator described in
the main text. Panels (b) and (c) report the mining college graduate coefficient if the firm does not already use the
same locomotive type in other counties, and if it does. The same controls as in the prior locomotive usage regressions

are used. A linear probability model is used with standard errors clustered at superintendent level.
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Figure 1: Educational background of mine superintendents

Notes: The solid line plots the share of Pennsylvania anthracite mines with a
manager with a college-level mining engineering (E.M.) degree, the dashed line
does the same for other college degrees.
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Figure 2: Usage of mining locomotives

Notes: This graph shows the total number of locomotives of each type used in all anthracite mines of Pennsylvania.
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Figure 3: Mining engineer arrival: event study

(a) Electrical locomotives (b) Compressed air locomotives

(c) Steam locomotives (d) Labor

Notes: The estimated effect of mining college graduate hires at times 𝑡 − 𝑝 on the probability of locomotive adoption
at time 𝑡 is plotted for each locomotive type. Confidence intervals at the 95% level are indicated by the dotted red lines.
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Appendix

Appendix A Data sources and cleaning

Production and cost data

Data on output, inputs, managers, technical characteristics, ownership and locations of mines

were obtained from the Report of the Bureau of Mines by the Department of Internal Affairs

of Pennsylvania. This data was collected by government-appointed mine inspectors. The data

structure is unchanged between 1900 and 1914 and is composed of four tables per county. A first

table lists all mines, their owners, the managers, a post office location and the railroad to which it

is connected. A second table provides output and input data at the mine level. Technology choices

are reported in a third table, at the firm-county-year level. Fourthly, the occupational breakdown

of labor is given, again at the firm-county-year level.

I construct unique mine identifiers by tracking mine name changes over time. It happens that

mines have multiple sub-units which are reported separately in some years, but not in others. I

aggregate these sub-units to the mine-year level in order to have an observation unit that remains

stable over time. Locomotive counts of all three types are observed at the county-firm-year level,

rather than the mine level. I assign locomotives evenly to all mines belonging to the same firm-

county-year pairs in the baseline specification. 4 observations have no county name listed, which

I drop because they cannot be linked to the machine data. I also drop 318 observations for

which no mine superintendent is listed (no information on superintendents can be linked) and 298

observations for which the same mine-year combinations entered twice in the report tables. I do

not observe the mine locations, but observe the town in which the mine superintendent was located.

I assume that this is also the location of the mine. I use google maps to link the town names

to geographical coordinates. Panel (a) of table A1 shows some summary statistics on the mines.
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Annual extraction was on average 0.21 Mton. The average mine had 509 employees.

[Table A1 here]

Management data

Mining engineering graduates

I obtain a list of all mining engineering programs offered in the U.S.A. in 1912 from the Report

of the Commissioner of Education for the Year 1912, volume 2. This results in a list of 40 mining

engineering programs, which are listed in the Online Appendix. Four mining engineering programs

were offered in Pennyslvania, at Lehigh University, Lafayette College, Pennsylvania State College,

and the University of Pittsburgh. Information on the graduates from these programs can be found

from two sources: college alumni registries which include all alumni up to a certain date, and

college yearbooks, which include all students in a certain year. I access these alumni registries and

catalogs through two sources: Ancestry.com and self-collected alumni registries and catalogs. This

way, I collect a database with mining college graduates containing their last, middle, and given

name. I match the coal mine superintendents in the mining data set with the names in the alumni

registry, and correct for false positives by comparing the graduation years, manager birth years,

and addresses in the various datasets. This matching procedure results in 17 college graduates in

the coal mining data set, of which 7 graduated with a degree in mining engineering, from Lehigh

University and Lafayette College, both located in Pennsylvania. More details on this matching

procedure and on the mining college alumni database can be found in Online Appendix O.3.

Summary statistics on the managers

Summary statistics on the managers are in panel (b) of table A1. Superintendents with mining

college degrees were on average 31, and those with other college degrees 33, whereas the average

non-educated superintendent was 49. Mining college graduates were put in charge of more mines:
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10 on average, compared to only 3 for non-educated managers, and 1 for other college graduates.

Their mines were, however, slightly smaller in size than those managed by non-educated superin-

tendents. The number of superintendents per firm ranged between 1 and 4, and was on average

1.04. Multi-mine firms employed on average 1.17 superintendents.

Appendix B Robustness checks

Common fixed cost component across locomotive types

It could be that a part of the fixed cost to use a certain locomotive type is also useful for other

locomotive types. If this is the case, then the presence of other locomotive types at the mine should

decrease the cost of using a given locomotive type. In table A2(a), I add the usage of the other

two locomotive types as a regressor to the choice function from equation (3). The results are very

similar compared to the specification in the main text: mining college graduates are associated

with a significant and large increase in electrical locomotive usage of 19.7 percentage points

and an increase in steam locomotive usage by 5.9 percentage points. In contrast, air locomotive

usage was 16.1 percentage points lower for mining college graduates. The difference in electricity

usage between mining college graduates and others is still hence still significantly above zero and

significantly larger than both the compressed air and steam usage differences, at the 5% and 10%

confidence level respectively.

Discrete-choice model

When estimating the technology choice model (3), a linear probability model was used. In panel

(b) of table A2, I estimate a logit model instead. I report the marginal effects at the mean. The

estimates are somewhat higher compared to the baseline model, but the conclusions are similar:

mining college graduates are 26.5 p.p. more likely to use electrical locomotives, 13.5 p.p. more
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likely to use steam locomotives, which are both significantly positive effects. The compressed air

coefficient is now positive too, at 6.7 p.p., but not significantly larger than zero. An important

difference compared to the baseline model is that mine fixed effects are no longer included in

this specification, which could explain the slight difference in estimates. It is likely that time-

invariant mine characteristics, such as the geographical location of the mine, are correlated with

both locomotive adoption and managerial hires.

Cost dynamics

If cost dynamics are important, which is often the case in extractive industries, then productivity

should depend on the total amount of coal extracted in the previous periods, which may also have

affected the need for mining locomotives.8 In order to examine whether cost dynamics affect the

estimated effects of mining college graduates on locomotive usage, I re-estimate equation (3) with

log cumulative output as an additional regressor. The results are in table A2(c). The mining college

coefficients are very similar to those from the baseline model in table 1(a), and the R-squared barely

changes.9 Cumulative output itself has barely any effect on the usage probability of any locomotive

type.

8This could have been the case for coal mines. Coal that can be reached at the lowest cost is usually mined first.
Marginal costs are hence likely to increase as more coal is extracted (Aguirregabiria and Luengo, 2015; Asker et al.,
2019). On the other hand, there could have been some ‘learning by doing’, as in Benkard (2000).

9The R-squared is slightly lower compared to the model without cumulative output, but the sample size differs as
at least one lagged period of output needs to be observed to calculate cumulative past output.
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Table A1: Summary statistics

(a) Mines Mean Std. Dev. Min. Max. Observations

Coal extracted, Mtons 0.21 0.19 0 3.52 5,029
Output shipped, share 0.84 0.18 0 1 4,868
Employees 509.19 427.13 0 6595 5,029
Powder, 1000 kegs 51.96 137.06 0 1748.43 5,029
Coal inputs, Ktons 20.56 21.56 0 494.48 5,029
Mining locomotives 25.35 35.50 0 172 5,029
Man. has M.C. degree 0.06 0.24 0 1 5,029
Man. has other col. degree 0.01 0.1 0 1 4,393

(b) Managers Mean Std. Dev. Min. Max. Observations

Age
if mining degree 30.77 6.94 21 45 30
if other degree 32.53 5.02 20 43 38
if no degree 48.88 10.96 19 80 1,179

# Mines managed
if mining degree 9.83 11.77 1 30 30
if other degree 1.21 0.53 1 3 38
if no degree 3.32 6.10 1 41 1,179

Output, Mtons
if mining degree 0.22 0.16 0.025 0.67 30
if other degree 0.17 0.26 0.04 0.72 38
if no degree 0.14 0.13 0 0.81 1,179
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Table A2: Technology choice: robustness

(a) Common fixed costs 1(Elec. loc.) 1(Air. loc.) 1(Steam loc.)
Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) 0.197 0.060 -0.161 0.092 0.059 0.041

1(Other grad.) 0.042 0.081 -0.019 0.036 0.062 0.145

Observations 4079 4079 4079
Within R-squared .329 .143 .149

(b) Logit model 1(Elec. loc.) 1(Air. loc.) 1(Steam loc.)
Estimate S.E. Estimate S.E. Estimate S.E.

1(Mining col. grad.) 0.265 0.051 0.067 0.073 0.135 0.049

1(Other grad.) -0.117 0.167 -0.434 0.109 0.064 0.118

Observations 4079 4079 4079

Notes: Compared to table 1, panel (a) adds the usage of both other locomotive types as additional control variables.
Panel (b) uses a logit model, and reports the marginal effects. Mine fixed effects are excluded from the logit model.
Panel (c) adds log cumulative past output as a regressor, which reduces the number of observations as only

observations with lagged values are considered.
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