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1 Introduction
Interest is growing in the monopsony power of firms on their labor and other factor mar-
kets. Production functions are increasingly used to estimate "factor price markdowns," a
key object of interest when studying monopsony power.1 However, there is scant evidence
on the performance of these "production approach" estimators. To fill this gap, we conduct
Monte Carlo simulations in which we generate oligopsonistic labor market equilibria. We
use these simulated data to estimate factor price markdowns using existing production ap-
proaches. Comparing these estimates to the true markdown distribution enables us to assess
how well these production-approach estimators recover true markdowns under a variety of
data-generating processes (DGPs).

We start by discussing existing production-approach markdown estimators that extend the
markup-estimation approach of Hall (1988) and De Loecker and Warzynski (2012) to al-
low for endogenous factor prices (Dobbelaere & Mairesse, 2013; Morlacco, 2017; Mertens,
2019; Brooks, Kaboski, Li, & Qian, 2021; Yeh, Hershbein, & Macaluso, 2022; Rubens,
2023; Mertens & Schoefer, 2024; Delabastita & Rubens, 2025). These approaches share
an assumption that the price of at least one variable input is exogenous, and they normalize
the markup expressions from the cost-minimization first-order conditions of all other vari-
able inputs compared to the variable input with the exogenous input price. This allows for
recovering the markdowns for all other inputs.

We test this class of production approaches to markdown estimation by simulating data
that are generated under a discrete-choice labor supply model in the spirit of Berry (1994) and
Card, Cardoso, Heinig, and Kline (2018), in which we let firms compete oligopsonistically à
la Nash-Bertrand. In contrast to Card et al. (2018), who impose monopsonistic competition,
we allow for granular employers, similarly to Berger, Herkenhoff, and Mongey (2022) and
Azar, Berry, and Marinescu (2022). On the labor demand side, we assume cost-minimizing
firms that produce following a Cobb-Douglas production function with two variable inputs:
labor and materials. Given the oligopsonistic labor supply side, labor wages are endogenous
to individual firms, meaning that the residual labor supply curves are upward-sloping. In
contrast, we assume that material prices are taken as given by the individual firms. We
run a Monte Carlo simulation in which we sample 250 firms that operate in 50 different
markets over 10 years, then we solve for labor market equilibrium in each of these markets.
We resample this simulation exercise for 200 random draws. We find that under the Hicks-

1See Syverson (2024) for an excellent survey of the literature on markups and markdowns.
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neutral DGP, the production-based markdown estimator delivers precise, consistent estimates
of wage markdowns and of the production-function coefficients.

Next, we argue that Hicks neutrality is the key assumption needed for markdown identifi-
cation, as discussed in more detail in Rubens, Wu, and Xu (2024).2 We relax this assumption
by allowing for random coefficients in the production function. Such random coefficients
arise if there is unobserved technological heterogeneity between firms, as is likely to occur
in many applications. We rerun our Monte Carlo simulation under an identical labor supply
side, but with the non-Hicks-neutral production function on the labor demand side. We find
that in contrast to the Hicks-neutral DGP, both the production-function coefficients and the
wage markdowns are estimated with considerable bias. The main reason for this bias is that
latent technological heterogeneity and wage markdowns are not separately identified using
the cost-minimization first-order conditions.

We test an alternative production-function estimator proposed by Rubens et al. (2024),
which adapts the production-function estimator of Doraszelski and Jaumandreu (2018) to
allow for imperfect factor market competition. We find that this estimator delivers consistent
estimates of the production function and of markdowns when there is unobserved hetero-
geneity in the production-function coefficients. We also simulate the performance of this
estimator when the true production function is Hicks-neutral: we find that the estimator of
Rubens et al. (2024) is less efficient than the Hicks-neutral markdown estimator in this case,
but that it still recovers the true production-function coefficients with minimal bias.

We conclude by discussing how other commonly made assumptions have been relaxed in
the literature. We discuss allowing for nonsubstitutable inputs in production, labor-market-
conduct assumptions other than Nash-Bertrand, differentiated goods and inputs, adjustment
frictions, and cases in which none of the factor prices can be reasonably assumed to be
competitive.

The rest of this paper is structured as follows. In Section 2, we set up the primitives and
behavioral assumptions of our model. In Section 3.2, we estimate markdowns using various
simulated DGPs to test and compare various production-approach markdown estimators.
Section 4 discusses further extensions. Section 5 concludes.

2Another paper that studies markdowns while departing from Hicks neutrality is Azzam, Jaumandreu, and Lopez
(2025), which studies U.S. meatpacking firms. That paper, in contrast to ours, does not rely on estimating a
factor supply curve to separately identify factor price markdowns from factor-augmenting productivity differ-
ences.
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2 Model

2.1 Primitives

We start by providing a model of factor demand and supply under oligopsonistic competition,
which serves as a DGP to test the various approaches to markdown estimation. In what
follows, we discuss the model primitives: the production function and the factor supply
model.

Production Function

Let firms be indexed by f and time periods by t. We assume that firms use two factors of pro-
duction: labor Lft and materials Mft, which are transformed into a scalar output level Qft

following a production function H(.). Hicks-neutral productivity is indicated by Ωft, mea-
surement error in output is indicated by εft, and there is possibly unobserved heterogeneity
in the production-function coefficients βft:

Qft = H(Lft,Mft, βft)Ωft exp(εft) (1a)

Next, we highlight three assumptions.3 Assumption 1 rules out perfect complementarities
between inputs, such as in a Leontief production function. We relax this assumption in
Section 4.1.

Assumption 1 The production function H(.) is twice differentiable.

Assumption 2 assumes that both the produced good and the inputs are undifferentiated. We
discuss how to relax this assumption in Section 4.4.

Assumption 2 Both the good Qft and the inputs Lft and Mft are homogeneous.

For the simulations, we impose a simple Cobb-Douglas production function, which in
logs gives Equation (1b), but any production function that satisfies Assumption 1 can be
used. The output elasticities of labor and materials are denoted as βlft and βmft:

qft = βlftlft + βmftmft + ωft + εft (1b)

3As a convention throughout the paper, we list the assumptions that are used to estimate the production function
and markdowns, whereas other assumptions that are used to simulate the data but are not key to estimating the
production function are simply mentioned, but are not listed separately.
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We impose an AR(1) transition process for the sum of the log of Hicks-neutral produc-
tivity and measurement error, with serial correlation ρ and i.i.d. productivity shocks eft.
This assumption is useful—because it allows for estimating the production function using a
dynamic panel approach—but is not strictly necessary.

ωft + εft = ρ(ωft−1 + εft−1) + eft (2)

Finally, we assume that both labor and materials are variable, static inputs, meaning that
they are not subject to adjustment frictions and fully depreciate during every period.4

Assumption 3 Labor and materials are variable, static inputs.

Labor Supply

We impose a discrete choice model of labor supply with oligopsonistic competition in the
spirit of Berry (1994) and Card et al. (2018), to simulate an environment in which markdowns
vary between firms, and in which firms set wages strategically. Firms pay per-unit wages
W l
ft to workers i, who choose their employment between a set of firms, Ft, with f = 0

indicating the outside option of being unemployed. We assume that firms are not able to
wage-discriminate between workers. We assume that the utility of a worker i who works at
firm f depends on the log of the wage W l

ft, an unobserved amenity ξft, and an i.i.d. type-I
distributed firm-worker error term υift:

Uift = γ ln(W l
ft) + ξft︸ ︷︷ ︸

≡δft

+υift (3)

We denote mean utility as δft, which we normalize to zero for the outside option, as usual:
δ0t = 0. Using the logit formula, the labor market share sft =

Lft∑
g∈Ft

Lgt
is given by

sft =
exp(δft)∑
g∈Ft

exp(δgt)

4Fixed inputs, such as capital, can be added to the model, but they need to be solved using a dynamic investment
model, rather than the static cost-minimization problem for the variable inputs. However, fixed inputs cannot
be used to identify markdowns in this approach, as it requires normalizing first-order conditions from the static
cost-minimization approach.
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Denoting the labor force as L, the labor supply function is given by

Lft =
exp(γ ln(W l

ft) + ξft)∑
g∈Ft

exp(γ ln(W l
ft) + ξft)

L (4)

We denote the ψlft and ψmft as the inverse of the supply elasticities of labor and materials,
or in short, "inverse supply elasticities"5:

ψlft ≡
1

∂Lft

∂W l
ft

W l
ft

Lft

ψmft ≡
1

∂Mft

∂Wm
ft

Wm
ft

Mft

(5)

The imposed labor supply model implies the following inverse labor supply elasticity6

ψlft:

ψlft =
1

γ(1− sft)
(6)

We assume that materials are supplied perfectly elastically, meaning that ψmft = 0. There-
fore, intermediate-input prices are exogenous to individual firms.

Assumption 4 Residual intermediate-input supply is perfectly price elastic: ψmft = 0.

2.2 Behavior and Equilibrium

Cost Minimization

Producers choose inputs in every period to minimize variable costs, forming expectations
about output Q. Given that the shock εft is assumed to be classical measurement error,
firms’ expectations of output are E[Qft exp(εft)] = Qft. Therefore, firms choose inputs
such that Qft = H(.)Ωft. Denoting marginal costs as λft, the cost-minimization problem is
given by Equation (7):

min
W l

ft,Mft

[
Wm
ftMft +W l

ftLft − λft
(
Qft −H(.)Ωft

)]
(7)

5This inverse elasticity is not to be confounded with the elasticity of inverse supply
∂W l

ft

∂Lft

Lft

Wft
, which does not

have the same value under oligopsonistic competition.
6We derive this in Appendix A.2.
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Output is sold at a price Pft and firms set a price markup µpft ≡ (Pft − λft)/λft. Solving
the cost-minimization problem delivers the following labor demand and material demand7:

Pft
(µpft + 1)

βlLβ
l−1
ft Mβm

ft Ωft︸ ︷︷ ︸
MRPLft

= W l
ft(1 + ψlft)︸ ︷︷ ︸
MCLft

(8)

Pft
(µpft + 1)

βmLβ
l

ftM
βm−1
ft Ωft︸ ︷︷ ︸

MRPMft

= Wm
ft︸︷︷︸

MCMft

(9)

Firms set wages and material quantities such that the marginal revenue product of each
input (MRPL andMRPM ) equates to its marginal cost (MCL andMCM ). For materials,
the marginal cost is simply the materials price, as this price is exogenous, but for labor the
marginal cost includes the inverse labor supply elasticity.

We define equilibrium as the input quantity and prices vector (Lft,Mft,W
l
ft) that is the

solution of the system of equations consisting of (4), (8), and (9), which are labor supply,
labor demand, and materials demand. Materials supply, being perfectly elastic, does not
enter this system of equations, as the materials price Wm is exogenous.

Markups and Markdowns

Rearranging the first-order conditions, the markup µpft can be expressed as a function of out-
put elasticities, input revenue shares, and input supply elasticities, as also done in De Loecker,
Goldberg, Khandelwal, and Pavcnik (2016):

µpft =
βjft

αjft(1 + ψjft) exp(εft)
− 1 ∀j = l,m (10)

in which αjft denotes the expenditure on input j as a share of sales, αlft ≡ W l
ftLft/PftQft

and αmft ≡ Wm
ftMft/PftQft.

The markdown of the wage below the marginal revenue product of labor is denoted as
µwft ≡ (MRPLft − W l

ft)/MRPLft, and can be expressed as a function of the inverse
elasticity of labor supply:

µwft =
ψlft

1 + ψlft
(11)

7We derive these in Appendix A.1.
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The more inelastic the labor supply curve (larger ψ), the greater a firm’s ability to exercise
monopsony power and suppress wages, which would result in a larger wage markdown.

3 Identification and Estimation

3.1 Hicks-Neutral Approach

Markdown Identification

We start by discussing estimation of the inverse labor supply elasticity ψlft through the pro-
duction approach. Following Dobbelaere and Mairesse (2013), Morlacco (2017), Brooks
et al. (2021), and Yeh et al. (2022), the inverse labor supply elasticity can be expressed by
weighting the ratio of input expenditures by the respective output elasticities of both inputs:

ψlft =
βlft
βmft

αmft
αlft

− 1 (12)

Equation (12) makes clear that as soon as there is no unobserved heterogeneity in the
production-function coefficients βlft and βmft, the relative markdown of labor wages com-
pared to the material price markdown is identified if the production-function coefficients are
identified. Therefore, this approach requires imposing the additional assumption of Hicks
neutrality, which imposes that there is no unobserved heterogeneity in the coefficients βlft
and βmft.

Assumption 5 (Hicks neutrality): There is a scalar unobservable in production, Ωft. This

implies that the coefficients βlft and βmft are fully observed.

Under a Cobb-Douglas functional form, Assumption 5 implies homogeneous output elas-
ticities, βlft = βl and βmft = βm. Other functional forms for the production function, such
as a translog or a CES production function, can allow for heterogeneity in output elasticities
across firms and time. However, the key assumption implied by Hicks neutrality is that there
is no unobserved heterogeneity in these output elasticities, that the only source of unobserved
heterogeneity in production is the scalar productivity residual Ωft.

Under Assumption 5, the production-approach markdown expression (12) is point-identified
as soon as the output elasticities βl and βm are identified.
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Identifying the Production Function

To identify the production function, we combine imposing timing assumptions on input
choices, as in Ackerberg, Caves, and Frazer (2015), with relying on the law of motion for
productivity from Equation (2), as in Blundell and Bond (2000). Taking ρ-differences, the
productivity shock can be written as

eft = qft − ρqft−1 − βl(lft − ρlft−1)− βm(mft − ρmft−1)

Assuming that labor and materials are both variable inputs, the following moment conditions
are formed for lags r = 1 up to r = T − 1, with the panel length being denoted as T . As
in Ackerberg et al. (2015), the identifying assumption is that the variable inputs (in our case,
materials and labor) are chosen after the firm observes the observable component of the
productivity shock eft8:

E
[
eft(ρ, β

l, βm)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (13)

We estimate the production-function coefficients (βl, βm) using these moment conditions,
including the first and second lag of labor and materials as instruments.9 We use the resulting
estimates (β̂l, β̂m) to estimate the inverse supply elasticity ψlft using Equation (12). Hence,
the inverse labor supply elasticity is estimated from the production function alone, without
needing to estimate the labor supply parameters γ and ξft.

Monte Carlo Simulation

We simulate a dataset of 50 independent labor markets that each contain five firms, which
are observed over 10 years. Hence, the simulated dataset contains 250 firms and 2,500 ob-
servations. We parametrize the true output elasticities of labor and materials10 at βl = 0.5

and βm = 0.3. We let intermediate input prices Wm
ft in the first year be distributed as a nor-

mal distribution Wm
f1 ∼ N (5, 0.05) and let it evolve by firm-level shocks that are N (0, 0.01)

distributed. Similarly, we let the initial log productivity distribution be normally distributed

8The part of eft that is caused by measurement error εft is unobservable to firms and iid, and is thus orthogonal
to current and past input choices by assumption. However, firms observe the part of eft that is due to shocks to
total factor productivity ωft.

9Given that we need to identify three parameters but have four moment conditions, our estimator is overidenti-
fied.

10We let the labor coefficient be larger than the material coefficient because we allow for heterogeneity in the
labor coefficient, and because we want to avoid labor coefficients being close to or below zero.
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ωf1 ∼ N (1, 0.1) and let the productivity shocks be N (0, 0.001) distributed. The serial cor-
relation in productivity is set at ρ = 0.6. The resulting distribution of log productivity has a
mean of 1/4 and a standard deviation of 1/3. We draw measurement error εft from a uniform
distribution on the [0, 1

1000
] interval. We normalize the total labor market size to one, and

we assume exogenous product prices, which we also normalize to one, P = 1. Given the
exogenous prices assumption, we set the price markup to µ = 0.

We conduct a Monte Carlo simulation with 200 independent draws. For each iteration,
we numerically solve the model by finding the equilibrium wages and market shares of all
firms (Lft,Mft,W

l
ft) such that the system of equations consisting of (4), (8), and (9) are

solved for every firm in every year, and such that labor supply is equal to labor demand at
the market level.

Estimation

We estimate the production-function parameters ρ, βl, and βm on the resulting dataset using
the moment conditions from Equation (13), and then we plug these estimates into Equation
(12) to estimate the inverse residual labor supply elasticities ψlft at all firms in every year.

Results

The distribution of the resulting estimates are visualized in the solid blue lines in Panel A
of Figure 1. We find that the Hicks-neutral production-function estimator yields precise,
consistent estimates of the output elasticities of labor and materials. As summarized in Panel
A of Table 1, the output elasticities of labor and materials are estimated at their true values of
0.5 and 0.3, with the standard deviation of these estimates across bootstrap iterations being
very small, at 0.003 for labor and below 0.001 for materials. Hence, the production function
is identified even if the labor market is imperfectly competitive. Moreover, we find that
the production-function estimator delivers a consistent estimate of the inverse labor supply
elasticity ψlft, which is on average estimated at its true average of 0.615, with a standard
deviation across draws of merely 0.009.

The assumptions imposed on the labor supply model and on conduct were only neces-
sary to simulate the dataset; they were not used to estimate production function: we esti-
mated markdowns correctly using the production function while remaining agnostic about
the model of competition on the labor market, the functional form for labor utility, and the
distribution of wage markdowns.
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Figure 1: Monte-Carlo Simulations

A: Hicks-Neutral DGP B: Factor-Biased DGP
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3.2 Introducing Unobserved Technological Heterogeneity

We now revisit the identification approach outlined in Section 2 by relaxing Assumption 5,
Hicks neutrality. This is a departure from prior production-approach markdown estimators,
including Morlacco (2017), Mertens (2019), Brooks et al. (2021), Yeh et al. (2022), Rubens
(2023), Mertens and Schoefer (2024), and Delabastita and Rubens (2025).

Instead of the Cobb-Douglas production function with constant output elasticities from
Equation (1b), we allow for unobserved random coefficients (βlft, β

m
ft). We retain the Cobb-

Douglas functional form for simplicity, but we refer to Rubens et al. (2024) for estimation
of a Constant Elasticity of Substitution production function under imperfect labor market
competition, and for an empirical application in the context of the Chinese nonferrous metals
industry.

Identification

Equation (12) makes clear that to identify the wage markdown, it is crucial to fully estimate
the random coefficients βmft and βlft. Although there is a literature on estimating production
functions with nonscalar unobservables, such as Doraszelski and Jaumandreu (2018) and
Demirer (2019), these estimators rely on the assumption of perfect factor market competi-
tion, which imposes ψlft = ψmft = 0. In contrast, Rubens et al. (2024) develop an estimator
that allows for both nonscalar unobservables in production and imperfect factor market com-
petition. In this section, we lay out this identification strategy in the context of our production
model.

Rubens et al. (2024) rely on jointly estimating the labor supply curve and the production
function. Using the discrete-choice labor supply model imposed above, the labor supply
equation to be estimated is given by

sft − s0it = γ ln(Wft) + ξft (14)

As was derived in Equation (6), an estimate of the inverse labor supply elasticity, ψ̂lft,
can be recovered as a function of the estimated wage coefficient in labor supply γ̂ and the
observed labor market share sft. Then, from Equation (12), one can express the output
elasticity of labor as a function of the estimated wage markdown ψ̂lft, the observed revenue
shares αlft and αmft, and the yet-to-be-estimated materials coefficient βm. We opt to impose
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a homogeneous coefficient βm, but to allow for heterogeneous returns to scale11:

β̂lft =
(̂ψlft + 1)αlftβ

m

αmft
(15)

Substituting this output elasticity of labor into the production function results in Equation
(16), in which the term aft ≡

ψ̂l
ftα

l
ftlft

αm
ft

+mft is composed solely of observed and estimated
terms. Hence, the error term in the production function is again reduced to a scalar unob-
servable ωft and measurement error εft:

qft = βm[
(̂ψlft + 1)αlftlft

αmft
+mft︸ ︷︷ ︸

aft

] + ωft + εft (16)

Again using the equation of motion for productivity, we isolate the productivity shock eft
as

eft = qft − ρqft−1 − βm(aft − ρaft−1)

The moment conditions to estimate the parameters (βm, ρ) are given by

E
[
eft(ρ, β

m)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (17)

We again estimate the production-function parameters taking up to two lags. Using the
estimated materials coefficient β̂m, the full distribution of the output elasticities of labor
βlft can be recovered using Equation (15), which is now a function of data and estimated
parameters from labor supply (γ) and the production function (βm).

Monte Carlo Simulations

We keep the same parametrization from the Monte Carlo simulation in Section 2, with the
only difference that we now allow for unobserved heterogeneity in the output elasticity of
labor. We parametrize this unobserved heterogeneity as βlft ∼ U [1

3
, 2
3
]. Although we assume

that the error terms υlft and υmft are idiosyncratic in the Monte Carlo simulation, one could
allow for persistent differences and a time trend in this technological heterogeneity, in or-

11Alternatively, one could easily allow for heterogeneity in βm
ft while imposing homogeneous returns to scale.
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der to incorporate factor-biased technological change over time. We solve for labor market
equilibrium using the same procedure that was outlined in Section 3.1.

Estimation

We estimate the production function and markdowns twice. First, as a means of comparison,
we follow the estimation procedure outlined in Section 3.1, which assumes Hicks neutrality.
Second, we estimate the production function using the estimation procedure from Rubens et
al. (2024) that was outlined above. We start by estimating Equation (14). Given the latent
firm amenities ξft, we need to find an instrument for wages that is excluded from the error
term ξft. We assume that a labor demand shifter zft is available, which we construct as a
variable that is correlated with productivity but uncorrelated to the amenity firm ξft. We
parametrize this labor demand shifter as the sum of TFP and an error term uft, which is
normally distributed with a zero mean and standard deviation of 0.01:

zft =
Ωft

2
+ uft

With this labor demand shifter at hand, we estimate the labor supply curve (14) using 2SLS.
Using the estimated parameter γ̂ and the observed labor market share sft, we compute wage
markdowns following Equation (6). Finally, we substitute the markdown estimate ψlft into
Equation (16) and form the moment conditions (17) to estimate the production-function pa-
rameters βm and ρ. The full distribution of the output elasticity βlft can then be recovered
using Equation (16).

Results Under the Factor-Biased Data-Generating Process

We visualize the production-function estimates for the DGP with random coefficients in the
production function in Panel B of Figure 1. The solid blue lines in Figure 1 report the esti-
mates using the Hicks-neutral production-function estimator. It is clear that the markdown
estimator that relies on Hicks neutrality does a poor job of estimating the production-function
coefficients: the labor coefficient is estimated at 0.79, which is 58% above its true value,
whereas the materials coefficient is estimated at 0.23, which is 24% below the true value. As
a result, the Hicks-neutral model estimates ψl at 2.494 on average, which is four times larger
than the true average value of 0.613. This leads the econometrician to believe that wages
are marked down 71% below the marginal revenue product of labor,12 whereas wages are in
reality marked down 38%.

12Using Equation (11), µw = (2.494/(1 + 2.494)).

13



Figure 2 shows the source of the identification problem by plotting the estimated inverse
labor supply elasticity against the true output elasticity of labor, βlft across observations in a
single bootstrap iteration (the first of 200 iterations), for both estimators. In the Hicks-neutral
model, the latent variation in the output elasticity of labor is interpreted as wage-markdown
variation: firms with high output elasticities of labor are estimated to set a low wage mark-
down, because their cost share of labor is higher than average. In contrast, our estimator
delivers elasticities of inverse labor supply that are independent of the output elasticity of
labor, as is true in the underlying DGP.

Figure 2: Estimated Inverse Labor Supply Elasticity vs. Output Elasticity of Labor

The red dashed lines in Panel B of Figure 1 plot the estimates using the method of Rubens
et al. (2024) for the random-coefficients DGP. The inverse labor supply elasticity is esti-
mated with a small bias, at 0.669 compared to the true value of 0.613, which is due to the
small-sample properties of the instrumental variables estimator of labor supply. Turning to
the production-function coefficients, we find that our estimator delivers consistent output
elasticity estimates. Hence, the production function can be estimated even with random co-
efficients and imperfect labor market competition, but it needs to be estimated jointly with
the labor supply curve.

Results Under the Hicks-Neutral Data-Generating Process

How does the estimator of Rubens et al. (2024) perform if there is in reality no unobserved
heterogeneity in the output elasticities? Panel A of Table 1 shows that the output elasticities
of labor is still estimated reasonably close to the truth, at 0.516, which implies an upward

14



bias of 3.2%, whereas the materials elasticity is estimated consistently. The standard errors
on these estimates—0.071 and 0.003 for labor and materials, respectively—are much higher
than when using the Hicks-neutral estimator, but still relatively precise. The full distribution
of the output elasticity and markdown estimates are visualized as the red lines in Panel A of
Figure 1.

Assuming Exogenous Input Prices

Finally, we reestimate the production function under both DGPs using the method of Rubens
et al. (2024), but assuming exogenous input prices. This corresponds to using the estimator
of Doraszelski and Jaumandreu (2018) for a random-coefficients Cobb-Douglas model. We
find that imposing exogenous input prices when the true DGP is oligopsonistic and Hicks-
neutral results in a serious bias in the materials coefficient, which is estimated at 0.492,
whereas the true βm is 0.3, as can be seen in the middle columns of Panel A in Table 1. The
estimates are very similar when the DGP is factor-biased, as shown in Panel B of Table 1.

4 Further Extensions

4.1 Nonsubstitutable Inputs

So far, we have assumed a gross-output production function, through Assumption 1. How-
ever, a lot of industries feature production processes in which it is hard to substitute between
materials and the other factors of production. Rubens (2023) relaxes Assumption 1 by allow-
ing materials to be a perfect complement to a composite term of labor and capital, in order to
study monopsony power of cigarette manufacturing firms in China. The production function
is given by Equation (18), which reflects that when producing cigarettes, tobacco leaves M
cannot be substituted with either capital or labor:

Qft = min{Lβ
l

ftK
βk

ft ; β
mmft}Ωft exp(εft) (18)

Thus, the markup now takes on a different form, which reflects that marginal costs are addi-
tive in labor and materials and which incorporates inverse factor supply elasticities13:

µft = (
αlft
βl
ψlft + αmftψ

m
ft)

−1 (19)

In contrast to the models in Sections 2 and 3.2, the first-order conditions for labor and ma-

13This formula diverges from De Loecker and Scott (2022) by allowing for endogenous input prices.
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Table 1: Monte Carlo Simulations: Summary

(a) DGP 1: Hicks-neutral Hicks-neutral RWX(2024) RWX(2024)
estimator with exo. wage with endo. wage

Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.500 0.003 0.508 0.000 0.516 0.071

sd(βl) true = 0 0.000 . 0.006 <0.001 0.002 0.002

βm true = 0.3 0.300 0.000 0.492 <0.001 0.299 0.003

ψl true = .614 0.614 0.009 0.000 . 0.670 0.248

(b) DGP 2: Random coefficients Hicks-neutral RWX(2024) RWX(2024)
estimator with exo. wage with endo. wage

Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.792 0.048 0.503 0.001 0.509 0.060

sd(βl) true = 0.096 0.000 . 0.050 0.001 0.120 0.303

βm true = 0.3 0.229 0.004 0.497 0.001 0.298 0.028

ψl true = .613 2.494 0.256 0.000 . 0.669 0.249

Notes: This table reports the results of the Monte Carlo simulations, which were carried out with 200
iterations. Panel A reports the estimates when the true DGP is Hicks-neutral. The first two columns report the
Hicks-neutral estimator. The final four columns report the estimator of Rubens et al. (2024), both when
assuming exogenous wages (columns 3–4) and when allowing for endogenous wages (columns 5–6). Panel B
does the same but covers the case in which the true DGP is not Hicks-neutral, but instead features unobserved
random coefficients in production.
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terials are no longer linearly independent; rather, there is a single first-order condition that
takes into account both input prices and input supply elasticities. The reason for this reduc-
tion in the number of first-order conditions is that firms do not choose labor and materials
separately, as one input choice determines the other input quantity as well. This is a problem
for identification of either input-price markdown, as one can no longer divide the two first-
order conditions by each other to express the markdown in function of output elasticities and
revenue shares.

Of course, it is always possible that there is a third variable input, such as energy. If this
third input is substitutable with the input over which monopsony power is exerted (so far,
labor), then the markdown on that substitutable input can still be identified by solving for the
energy first-order condition and the markup expression (19).

However, this does not apply if firms exert monopsony power on the nonsubstitutable in-
put. Even if one could add variable inputs that substitute with labor, resulting in additional
first-order conditions, this would not allow one to write the inverse material supply elasticity
ψmft as a function of output elasticities and data, because materials are perfect complements
to any of these other variable inputs. In this case, one needs to either estimate or impose a
markup, or estimate the factor supply elasticity, as discussed in Rubens (2023). This iden-
tification strategy has been implemented in various industries, including Chinese tobacco
manufacturing (Rubens, 2023), German car manufacturing (Hahn, 2024), French dairy pro-
duction (Avignon & Guigue, 2022), and Chinese coal mining (Zheng, 2024).

4.2 Labor Market Conduct

The labor market simulations in Section 3 impose that firms compete à la Nash-Bertrand,
which implies oligopsonistic competition. This approach nests models of monopsonistic
competition if labor market shares approximate zero. In this subsection, we consider models
of labor market competition other than oligopsonistic or monopsonistic competition.

Collusion

Firms might collude on their input markets: coordinating their wage or employment choices
rather than making these decisions independently. Delabastita and Rubens (2025) consider
markdown estimation when firms potentially collude. Maintaining the assumption of Hicks
neutrality, they show that the wage markdown can still be estimated using the production
approach, even if firms collude on their labor markets. Next, they combine estimation of a
labor supply model with the production estimates to identify conduct on the labor market;
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they find that their collusion estimates align with the observed introduction of a cartel in the
Belgian coal mining industry.

Bargaining

In many labor market settings, firms and workers bargain over wages, rather than firms
merely posting wages (Caldwell, Haegele, & Heining, 2025). This bargaining can either
be individual or collective, through a labor union. Rubens (2024) considers production-
approach markdown estimation when wages are bargained over. The author’s empirical ap-
plication focuses on Illinois coal operators, which bargain over wages with miner unions. A
methodological challenge arises because to identify bargaining parameters, an estimate of
the production function is needed, but bargaining parameters need to be known in order to
identify the production function. Rubens (2024) addresses this problem using a fixed point
estimator, in which production-function estimation is nested in a loop over which bargaining
parameters are guessed. In that particular application, the estimation procedure converges
quickly toward a stable set of estimates of both bargaining abilities and production-function
coefficients.

4.3 Differentiation and Multiproduct Firms

Product and Input Differentiation

Assumption 2 imposed that both goods and inputs are homogeneous, which is clearly a
strong assumption in many settings. Although vertical product differentiation can be allowed
for using a price control in the production function (De Loecker et al., 2016; Rubens, 2023),
most goods and factors are horizontally differentiated as well. Hahn (2024) addresses the
challenge of differentiated goods by estimating a hedonic price model for car manufacturers,
which incorporates car characteristics in addition to a production function. This model is
then used to estimate markdowns and examine bargaining between car manufacturers and
parts producers. A distinct challenge arises when the inputs, rather than the products, are
differentiated. Lamadon, Mogstad, and Setzler (2022) address this challenge by allowing for
heterogeneous worker quality using matched employer-employee data.

Multiproduct Firms

Production-function estimation with multiproduct firms is challenging even if input markets
are perfectly competitive, because data on inputs are usually not available at the product
level. Various approaches have been developed to address this challenge (De Loecker et
al., 2016; Dhyne, Petrin, Smeets, & Warzynski, 2022; Orr, 2022; Valmari, 2023) without
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allowing for imperfect factor market competition. Avignon and Guigue (2022) estimate
factor price markdowns for the French dairy industry while allowing for multiproduct firms.
They combine engineering data to assign input costs to the various products with production-
function estimation to recover markups and markdowns.

4.4 Adjustment Frictions

Assumption 4 imposes that both materials and labor are variable and static inputs. In many
applications, it is reasonable that at least a subset of these inputs will be subject to adjust-
ment frictions, such as hiring or firing costs. Although estimation of the production func-
tion is not hampered by such adjustment frictions (only the imposed timing assumptions
would change), these frictions do pose a challenge for markdown identification using the
production-function approach, because the markup and markdown expressions 10 and 11
are obtained by solving a static cost-minimization problem. Adjustment frictions lead to
additional wedges between marginal revenue products and input prices that are unrelated to
the exercise of monopsony power. One possibility to separately identify adjustment costs
from monopsony distortions is to, again, jointly estimate a labor supply model and a produc-
tion model and to recover frictions using matched employer-employee data. Chan, Mattana,
Salgado, and Xu (2023) implement such a model using Danish data.

4.5 No Competitive Input Market

Finally, Assumption 3 imposes that intermediate input prices are exogenous to firms. This
assumption is common in the literature (Morlacco, 2017; Brooks et al., 2021; Yeh et al.,
2022; Delabastita & Rubens, 2025); it is needed to point-identify the markdown when us-
ing only the production function, as made clear by Equation (11). If all input markets are
imperfectly competitive, meaning that no input price is exogenous, there are two potential
solutions. First, one could impose a model of imperfect competition and estimate a factor
supply curve for one of the inputs, as carried out in Section 3.2, and still identify the mark-
down of the remaining inputs using the production approach. Alternatively, Treuren (2022)
proposes estimating a revenue production function, in contrast to the quantity production
functions used in this paper so far, to identify wage markdowns without having to assume
competitive material markets.

Whereas the benefit of allowing for endogenous material prices is clear, using a revenue
production function comes at the cost of imposing homogeneous goods demand elasticities
between firms, which restricts the set of models of imperfect competition on the product
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market one can allow for. As with any assumption, the tradeoff between imposing additional
restrictions on product market competition while relaxing the assumptions in terms of in-
put market competition is specific to the empirical application, and depends on the type of
industry at hand.

5 Conclusions
In this paper, we review production approaches to estimate factor price markdowns. We
discuss the commonly made assumptions in this class of estimators, and we test this class
of estimators using Monte Carlo simulations for oligopsonistic labor markets in which firms
compete in wages in a static Nash-Bertrand equilibrium. We find that when production is
Hicks-neutral, existing production-approach markdown estimators recover markdowns con-
sistently. This implies that it is possible to estimate wage markdowns without having to
specify and estimate a labor supply model, and while remaining agnostic about the underly-
ing model of labor market conduct.

However, we find that allowing for unobserved technological heterogeneity in production
leads to severely biased estimates of factor price markdowns using the production approaches
that rely on Hicks neutrality. When implementing the estimation procedure suggested by
Rubens et al. (2024), which is designed to allow for departures from Hicks neutrality, we find
that the production-function coefficients and heterogeneity can be estimated consistently in
the presence of imperfect labor market competition.

Finally, we discuss approaches in the literature that have extended production approaches
to markdown estimation to relax other assumptions, such as allowing for nonsubstitutable
inputs, different types of labor market conduct, and multiproduct production.
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A Online Appendix

A.1 Derivation of First-Order Conditions

Denote expected output as Q∗ = H(.)Ω. We omit firm and time subscripts. First, we take
the first derivative of the cost-minimization problem (7) w.r.t. materials, which gives

Wm = λ
∂Q∗

∂M

Substituting λ = P
µ+1

into this equation and working out the first derivative results in the
FOC from the main text:

Wm =
P

µ+ 1
βmLβ

l

Mβm−1Ω

For labor, we need to take the first derivative w.r.t. the wage on both sides of Equation (7):

∂(W lL)

∂W l
= λ

∂Q∗

∂L

∂L

∂W l

Working out the derivative on the left-hand side and dividing both sides by ∂L
∂W l results in

L
∂L
∂W l

+W l = λ
∂Q∗

∂L

Factoring out W l and rearranging terms, we obtain

W l(
1

∂L
∂W l

W l

L

+ 1) = λ
∂Q∗

∂L

Finally, working out the derivative on the right-hand side and using the ψl notation results in
the FOC from the main text:

W l(1 + ψl) =
P

µ+ 1
βlLβ

l−1Mβm

Ω
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A.2 Derivation of Labor Supply Elasticity

Using the logit formula, the labor market share of firm f is

sf =
exp(δf )∑
k exp(δk)

with δf ≡ γ ln(wf ) + ξf

Taking the first derivative w.r.t., the wage gives

∂sf
∂wf

=

∑
k exp(δk) exp(δf )

γ
wf

− (exp(δf ))
2 γ
wf

(
∑

k exp(δk))
2

= sf (1− sf )
γ

wf

Multiplying by wf and dividing by sf obtains the labor supply elasticity that was used in the
main text:

∂sf
∂wf

wf
sf

= γ(1− sf )
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