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Factor price markdowns are a key object of interest when studying monopsony
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1 Introduction
There is an increased interest in the monopsony power of firms on their labor and other factor
markets. Production functions are increasingly used to estimate ‘factor price markdowns’,
which are a key object of interest when studying monopsony power.1 However, there is a
lack of evidence on the performance of these estimators. To fill this gap, we conduct Monte
Carlo simulations in which we generate oligopsonistic labor market equilibria. We use these
simulated data to estimate factor price markdowns using existing production function-based
estimators. Comparing these estimates to the true markdown distribution enables us how
well these ‘cost-based’ estimators succeed at recovering true markdowns under a variety of
data generating processes.

We start the paper by discussing existing production approaches to markdown estimation,
which extend the markup estimation approach of De Loecker and Warzynski (2012) and Hall
(1988) to allow for endogenous factor prices (Morlacco, 2017; Brooks, Kaboski, Li, & Qian,
2021; Yeh, Hershbein, & Macaluso, 2022; Mertens, 2022; Rubens, 2023; Delabastita &
Rubens, in press; Mertens & Schoefer, 2024). These approaches have in common that they
assume that the price of at least one variable input is exogenous, and normalize the markup
expressions from the cost minimization first order conditions of all other variable inputs
compared to the variable input with the exogenous input price.2 This allows recovering the
markdowns for all other inputs.

We test this class of markdown estimators by simulating data that are generated under a
discrete-choice labor supply model in the spirit of Berry (1994) and Card, Cardoso, Heinig,
and Kline (2018), in which we let firms compete oligopsonistically à la Nash-Bertrand.3

On the labor demand side, we assume cost-minimizing firms that produce following a Cobb-
Douglas production function with two variable inputs, labor and materials. Given the oligop-
sonistic labor supply side, labor wages are endogenous to individual firms, meaning that the
residual labor supply curves are upward-sloping. In contrast, we assume that material prices
are taken as given by the individual firms. We run a Monte Carlo simulation in which we
sample 250 firms that operate in 50 different markets during 10 years, and solve for la-
bor market equilibrium in each of these markets. We resample this simulation exercise for

1See Syverson (2024) for an excellent survey of the markups and markdowns literature.
2This identification approach was proposed in Appendix D of De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016).

3In contrast to Card et al. (2018), which imposes monopsonistic competition, we allow for granular employers,
similarly to Berger, Herkenhoff, and Mongey (2022) and Azar, Berry, and Marinescu (2022).
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200 random draws. We find that under the Hicks-neutral data generating process (DGP),
the production-based markdown estimator delivers consistent and precise estimates of wage
markdowns and of the production function coefficients.

Next, we argue that Hicks neutrality is the key assumption needed for markdown identifi-
cation, as discussed in more detail in Rubens, Wu, and Xu (2024). We relax this assumption
by allowing for random coefficients in the production function. Such random coefficients
arise if there is unobserved technological heterogeneity between firms, as is likely to occur
in many applications. We re-run our Monte Carlo simulation under an identical labor supply
side, but with the non-Hicks-neutral production function on the labor demand side. We find
that in contrast to the Hicks-neutral DGP, both the production function coefficients and the
wage markdowns are estimated with considerable bias. The main reason for this bias is that
latent technological heterogeneity and wage markdowns are not separately identified using
the cost-minimization first order conditions.

We test an alternative production function estimator, proposed by Rubens et al. (2024),
which adapts the production function estimator of Doraszelski and Jaumandreu (2018) to
allow for imperfect factor market competition. We find that this estimator delivers consistent
estimates of the production function and of markdowns when there is unobserved hetero-
geneity in the production function coefficients. We also simulate the performance of this
estimator when the true production function is Hicks-neutral, and find that the estimator of
Rubens et al. (2024) is less efficient than the Hicks-neutral markdown estimator in this case,
but still recovers the true production function coefficients with a minimal bias.

We end the paper by discussing how some of the other commonly made assumptions have
been relaxed in the literature. We discuss allowing for non-substitutable inputs in production,
labor market conduct assumptions other than Nash-Bertrand, differentiated goods and inputs,
adjustment frictions, and cases in which none of the factor prices can be reasonably assumed
to be competitive.

The remainder of this paper is structured as follows. In Section 2, we discuss cost-side
markdown estimators when the production function is Hicks-neutral. In Section 3, we intro-
duce technological heterogeneity in the production function, which relaxes the assumption
of Hicks-neutrality. Section 4 discusses further extensions, and Section 5 concludes.
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2 Markdown Estimation under Hicks Neutrality

2.1 Primitives

In this section, we test the canonical ‘production approach’ to markdown estimation, which
relies on Hicks-neutrality. We start by discussing the model primitives: the production func-
tion and the factor supply model.

Production Function

Let firms be indexed by f and time periods by t. We assume firms use two factors of pro-
duction: labor Lft and materials Mft, which are transformed into a scalar output level Qft

following a production function H(.).

Qft = H(Lft,Mft, β)Ωft (1a)

We start by highlighting three assumptions. As a convention throughout the paper, we list
the assumptions that are used to estimate the production function and markdowns, whereas
other assumptions that are used to simulate the data but are not key to estimate the production
function are simply mentioned, but not listed separately.

Assumption 1 There is a scalar unobservable in production, Ωft.

Assumption 1 imposes Hicks neutrality, as it rules out unobserved heterogeneity in the pro-
duction coefficients β. We relax this assumption in Section 3.

Assumption 2 The production function H(.) is twice differentiable.

Assumption 2 rules out perfect complementarities between inputs, such as in a Leontief
production function. We relax this assumption in Section 4.1.

Assumption 3 Both the good Qft and the inputs Lft and Mft are homogeneous.

Assumption 3 assumes that both the produced good and the inputs are undifferentiated. We
discuss how to relax this assumption in Section 4.4.

For the simulations, we impose a simple Cobb-Douglas production function, which in logs
gives Equation (1b), but any production function that satisfies Assumptions 1 and 2 can be
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used. The output elasticities of labor and materials are denoted as βl and βm.

qft = βllft + βmmft + ωft (1b)

We impose an AR(1) transition process for Hicks-neutral productivity with serial corre-
lation ρ and i.i.d. productivity shocks eft. This assumption is useful because it allows esti-
mating the production function using a dynamic panel approach, but is not strictly necessary.

ωft = ρωft−1 + eft (2)

Assumption 4 Labor and materials are variable, static inputs.

Finally, we assume that both labor and materials are variable, static inputs, meaning that they
are not subject to adjustment frictions and fully depreciate during every period.4

Labor Supply

We impose a discrete choice model of labor supply with oligopsonistic competition in the
spirit of Berry (1994) and Card et al. (2018), to simulate an environment in which markdown
vary between firms, and in which firms set wages strategically. Firms pay per-unit wages
W l
ft to workers i, who choose their employment between a set of firms, Ft, with f = 0

indicating the outside option of being unemployed. We assume that firms are not able to
wage-discriminate between their homogeneous workers. We assume that the utility of a
worker i that works at firm f depends on the wage Wft, an unobserved amenity ξft, and an
i.i.d. type-I distributed manufacturer-worker error term υift, as shown in Equation (3).

Uift = γWft + ξft︸ ︷︷ ︸
≡δft

+υift (3)

We denote mean utility as δft and normalize the utility of the outside option to zero, as

4Fixed inputs, such as capital, can be added to the model, but need to be solved using a dynamic investment
model, rather than the static cost minimization problem for the variable inputs. However, fixed inputs cannot
be used to identify markdowns in this approach, as it requires normalizing first-order conditions from the static
cost minimization approach.
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usual: Ui0t = 0. Using the logit formula, the labor market share sft =
Lft∑

g∈Ft
Lgt

is given by:

sft =
exp(δft)∑
g∈Ft

exp(δgt)

Denoting the labor force as L, the labor supply function H(.) is given by:

Lft =
exp(γ ln(Wft) + ξft)∑
g∈Ft

exp(γ ln(Wft) + ξft)
L (4)

We denote the inverse residual supply elasticities of labor and materials as ψlft − 1 and
ψmft − 1, such that:

ψlft ≡
∂W l

ft

∂Lft

Lft
W l
ft

+ 1 ψmft ≡
∂Wm

ft

∂Mft

Mft

Wm
ft

+ 1 (5)

Given the logit labor supply structure above, the residual inverse labor supply elasticity
faced by firm f , (ψlft − 1) is given by:

ψlft − 1 =
1

γ(1− sft)
(6)

2.2 Behavioral Assumptions

Producers choose inputs in every period to minimize current variable costs. We denote
marginal costs as λft, such that the cost minimization problem is given by Equation (7):

min
W l

ft,Mft

[
Wm
ftMft +W l

ftLft − λft
(
Qft −G(.)

)]
(7)

As shown in De Loecker et al. (2016), the markup of the final goods price Pft over marginal
costs, µpft ≡ (Pft − λft)/λft, is equal to Equation (8):

µpft =
βjft

αjftψ
j
ft

− 1 ∀j = l,m (8)
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where αjft denotes the expenditure on input j as a share of gross revenues of firm f in year
t, such that αlft ≡ W l

ftLft/PftQft and αmft ≡ Wm
ftLft/PftQft. Following Morlacco (2017),

Brooks et al. (2021), and Yeh et al. (2022), the inverse supply elasticity of labor can be
expressed relatively to the inverse supply elasticity of materials by weighting the ratio of
input expenditures by the respective output elasticities of both inputs:

ψlft =
βl

βm
αmft
αlft

ψmft (9)

The wage markdown of wages below the marginal revenue product of labor MRPLft is
denoted as µwft ≡ (MRPLft − Wft)/MRPLft, and can be expressed in function of this
inverse labor supply elasticity:

µwft =
ψlft − 1

ψlft
(10)

The more inelastic the labor supply curve, the greater a firm’s ability to exercise monopsony
power and suppress wages.

Assumption 5 Residual intermediate input supply is perfectly price elastic: ψmft = 1.

Assumption 5 implies that intermediate input prices are exogeneous to individual firms.
As can be seen in Equation (8), this assumption allows to point-identify the wage markdown,
rather than just the relative wage markdown compared to the material price markdown.

Solving the cost minimization problem, Equation (7), delivers the following labor demand
function in the Cobb-Douglas case, denoting factor prices as Wm

ftandW
l
ft:

Lft =
[ βl

W l
ftψ

l
ft

(βmΩft

Wm
ft

) βm

1−βmΩft

] 1−βm

1−βl−βm (11)

Optimal intermediate input demand is equal to:

Mft =
(βmLβl

ftΩft

Wm
ft

) 1
1−βm
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2.3 Identification and Estimation

Due to Assumption 4 (input variability) and the AR(1) law of motion for productivity, Equa-
tion (2), the production function can be estimated using a dynamic panel approach. Taking
ρ-differences, as in Blundell and Bond (2000), the productivity shock can be written as:

eft = qft − ρqft−1 − βl(lft − ρlft−1)− βm(mft − ρmft−1)

Similarly to Ackerberg, Caves, and Frazer (2015), assuming that labor and materials are both
variable inputs, the following moment conditions are formed for lags r = 1 up to r = T − 1,
with the panel length being denoted as T . As in Ackerberg et al. (2015), the identifying
assumption is that the variable inputs (in our case, materials and labor) are chosen after the
firm observes the productivity shock eft.

E
[
eft(ρ, β

l, βm)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (12)

We estimate the production function coefficients (βl, βm) using these moment conditions,
for two time lags. We use the resulting estimates (β̂l, β̂m) to estimate the wage markdown
ψlft using Equation (9). Hence, the inverse residual labor supply elasticity is estimated from
the production function alone, without requiring to estimate the labor supply parameters γ
and ξft.5

A dynamic panel approach to identify the production function, and the associated assump-
tion of the AR(1) productivity transition, is not strictly needed. One could instead identify
the production function using more widely used productivity inversion techniques, provided
that imperfect labor market competition is taken into account, as discussed in Ackerberg and
De Loecker (2021).

2.4 Monte Carlo Simulation

Parametrization

We simulate a dataset of 50 independent labor markets that each contain 5 firms, which are
observed during 10 years. Hence, the simulated dataset contains 250 firms that are observed
during 10 times each (N = 2500). We parametrize the true output elasticities of labor and

5Of course, we specified the logit labor supply side to simulate the data, but the labor supply curve does not
need to be estimated when estimating Equation 9.
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materials at βl = 0.5 and βm = 0.3. We let intermediate input prices Wm
ft in the first year be

distributed as a normal distribution Wm
f1 ∼ N (5, 0.05) and let it evolve by firm-level shocks

that are N (0, 0.01) distributed. Similarly, we let the initial log productivity distribution
be normally distributed ωf1 ∼ N (1, 0.01) and let the productivity shocks be N (0, 0.01)

distributed. The serial correlation in productivity is set at ρ = 0.6. The resulting distribution
of log productivity has a mean of 1/4 and a standard deviation of 1/3. We normalize the total
labor market size to one.

Solving for Equilibrium

We conduct a Monte Carlo simulation with 200 independent draws. For each iteration, we
numerically solve the model by finding the equilibrium wages and market shares of all firms
such that labor demand (11) equals labor supply (4) at each firm in each year, and that the
markets clear on aggregate.

We estimate the production function parameters ρ, βl, and βm on the resulting dataset
using the moment conditions from Equation (12), and then plug these estimates into Equation
(9) to estimate the inverse residual labor supply elasticities ψlft at all firms in every year.

Results

The distribution of the resulting estimates are visualized in the solid blue lines in Panel (a) of
Figure 1. We find that the Hicks-neutral production function estimator yields consistent and
precise estimates of the output elasticities of labor and materials. As summarized in Panel (a)
of Table 1, the output elasticities of labor and materials are estimated at their true values of
0.5 and 0.3, with the standard deviation of these estimates across bootstrap iterations being
very small, at 0.003 for labor and below 0.001 for materials. Hence, the production function
is identified even if the labor market is imperfectly competitive. Moreover, we find that
the production function estimator delivers a consistent estimate of the wage markdown ψlft,
which is on average 1.614 and estimated at 1.615, with a standard deviation across draws of
merely 0.009.

It is worth noting that the assumptions imposed on the labor supply model and on conduct
were only necessary to simulate the dataset, but were not used for production function esti-
mation: we estimated markdowns correctly using the production function while remaining
agnostic about the model of competition on the labor market, the functional form for labor
utility, and the distribution of wage markdowns.
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Figure 1: Monte-Carlo Simulations

(a) Hicks-neutral DGP: (b) Factor-Biased DGP:
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3 Introducing Unobserved Technological Heterogeneity

3.1 Extended Model

We now revisit the identification approach outlined in Section 2 by relaxing Assumption
1, which imposed Hicks-neutrality. Hicks-neutrality is assumed in most of the production
function-based markdown estimators, including Morlacco (2017), Brooks et al. (2021), Yeh
et al. (2022), Mertens (2022), Rubens (2023), Delabastita and Rubens (in press), and Mertens
and Schoefer (2024).

Instead of the Cobb-Douglas production function with constant output elasticities from
Equation (1b), we allow for unobserved random coefficients βlft, β

m
ft , as shown in Equation

(13).

qft = βlftlft + βmftmft + ωft (13)

We let the output elasticities of labor and materials be distributed around the same values
βl and βm as before, with idiosyncratic error terms ϵlft and ϵmft:βlft = βl + ϵlft

βmft = βm + ϵmft

Equation (13) is a simple way of allowing for unobserved heterogeneity while maintaining
the analytical simplicity of the Cobb-Douglas production function. We refer to Rubens et
al. (2024) for estimation of a Constant Elasticity of Substitution production function under
imperfect labor market competition, and for an empirical application in the context of the
Chinese nonferrous metals industry.

3.2 Identification Challenge

We rewrite the markdown estimator from Equation (9) taking into account the heterogeneous
output elasticities. Equation (14) makes clear that to identify the wage markdown, it is crucial
to fully estimate the random coefficients βmft and βlft.

ψlft =
βlft
βmft

αmft
αlft

ψmft (14)
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Although there is a literature on estimating production functions with non-scalar unob-
servables, such as Doraszelski and Jaumandreu (2018) and Demirer (2019), these estimators
rely on the assumption of perfect factor market competition, which imposes ψlft = ψmft = 1.
In contrast, Rubens et al. (2024) develops an estimator that allows for both non-scalar unob-
servables in production and imperfect factor market competition. We lay out this estimation
procedure below in the context of our simple production model.

3.3 Estimation

Rubens et al. (2024) relies on jointly estimating the labor supply curve and the production
function. Using the discrete choice labor supply model imposed above, the labor supply
equation to be estimated is given by:

sft − s0it = γ ln(Wft) + ξft (15)

Under the assumption of Nash-Bertrand conduct, the markdown ψlft can be recovered as
a function of the estimated wage coefficient in labor supply γ̂ and the observed labor market
share sft:

ψ̂lft = 1 +
1

γ̂(1− sft)
(16)

Then, from the first order conditions, one can express the output elasticity of labor as a
function of the estimated wage markdown ψ̂lft, the observed revenue shares αlft and αmft, and
the yet-to-be-estimated materials coefficient βm.

β̂lft =
ψ̂lftα

l
ftβ

m

αmft
(17)

Substituting this output elasticity of labor into the production function results in Equation
(18), in which the term aft ≡

ψ̂l
ftα

l
ftlft

αm
ft

+mft is composed solely of observed and estimated
terms. Hence, the error term in the production function is again reduced to a scalar unob-
servable ωft.

qft = βm[
ψ̂lftα

l
ftlft

αmft
+mft︸ ︷︷ ︸

aft

] + ωft (18)
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Again using the equation of motion for productivity, we isolate the productivity shock eft
as:

eft = qft − ρqft−1 − βm(aft − ρaft−1)

The moment conditions to estimate the parameters (βm, ρ) are given by:

E
[
eft(ρ, β

m)|

(
Lft−r

Mft−r

)]T−1

r=1
= 0 (19)

We again estimate the production function parameters taking up to two lags. Using the
estimated materials coefficient β̂m, the full distribution of the output elasticities of labor
βlft s can be recovered using Equation (17), which is now a function of data and estimated
parameters.

3.4 Monte Carlo Simulations

Parametrization and Estimation

We keep the same parametrization of the Monte Carlo simulation in Section 2, with the only
difference that we now allow for unobserved heterogeneity in the output elasticity of labor.
We parametrize this unobserved heterogeneity as βlft ∼ U [1

3
, 2
3
]. We solve for labor market

equilibrium using the same procedure that was outlined in Section 2.4.

We estimate the production function twice. First we “naively” estimate the production
function assuming the DGP is Hicks-neutral, using the moment conditions in Equation (12),
and estimate the markdown using the cost-side markdown estimator from Equation (9).

Second, we estimate the production function using the estimation procedure from Rubens
et al. (2024) that was outlined above. We start by estimating Equation (15). Given the latent
firm amenities ξft, we need to find an instrument for wages that is excluded from the error
term ξft. We assume that a labor demand shifter z is available, which we construct as a
variable that is correlated with productivity but uncorrelated to the amenity firm ξft. We
parametrize this labor demand shifter as the sum of TFP and an error term uft, which is
normally distributed with a zero mean and standard deviation of 0.01.

zft =
ωft
2

+ uft
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With this labor demand shifter at hand, we estimate the labor supply curve (15) using 2SLS.
Using the estimated parameter γ̂ and the observed labor market share sft, we compute wage
markdowns following Equation (16). Finally, we substitute the markdown estimate ψlft into
Equation (18) and form the moment conditions (19) to estimate the production function
parameters βm and ρ. The full distribution of the output elasticities αlft and αmft can then be
recovered using Equation (18).

Results under the Factor-Biased Data Generating Process

We visualize the production function estimates for the DGP with random coefficients in the
production function in panel (b) of Figure 1. The solid blue lines in Figure 1 report the
estimates using the Hicks-neutral production function estimator that assumes homogeneous
output elasticities. It is clear that the markdown estimator that relies on Hicks neutrality does
a poor job a estimating the production function coefficients: the labor coefficient is estimated
at 0.8, which is 60% above tis true value, whereas the materials coefficient is estimated at
0.23, which is 25% below the true value. As a result, the Hicks-neutral model estimates
the inverse labor supply elasticity at 3.559 on average, which is three times higher than the
true average value of 1.613. This leads the econometrician to believe that wages are marked
down by 72% below the marginal revenue product of labor,6 whereas wages are in reality
marked down by 38%.

Figure 2 shows the source of the identification problem by plotting the estimated inverse
labor supply elasticity estimates against the true output elasticity of labor, βlft across obser-
vations in a single bootstrap iteration (the first of the 200 iterations), for both estimators. In
the Hicks-neutral model, the latent variation in the output elasticity of labor is interpreted as
wage markdown variation: firms with high output elasticities of labor are estimated to set a
low wage markdown, because their cost share of labor is higher than average. In contrast,
our estimator delivers inverse labor supply elasticity estimates that are independent of the
output elasticity of labor, as is true in the underlying DGP.

The red dashed lines in panel (b) of Figure 1 plot the estimates using the method of Rubens
et al. (2024) for the random coefficients DGP. The markdown is estimated with a small nega-
tive bias, which is due to the small-sample properties of the instrumental variables estimator
of labor supply, but close to the true value of 1.613. Turning to the production function co-
efficients, we find that our estimator delivers consistent output elasticity estimates. Hence,
the production function can be estimated even with random coefficients and imperfect labor

6(1− 1/3.559)
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Figure 2: Markdowns and the Output Elasticity of Labor

market competition, but it needs to be estimated jointly with the labor supply curve.

Results under the Hicks-Neutral Data Generating Process

How does the estimator of Rubens et al. (2024) perform if there is in reality no unobserved
heterogeneity in the output elasticities? Panel (a) of Table 1 shows that the output elasticities
of labor is still estimated reasonable close to the truth, at 0.516, which implies an upward
bias of 3.2%, whereas the materials elasticity is estimated consistently. The standard errors
on these estimates, which are 0.072 and 0.003 for labor and materials, respectively, are much
higher than when using the Hicks-neutral estimator, but still relatively precise. The full
distribution of the output elasticity and markdown estimates are visualized as the red lines in
Panel (a) of Figure 1.

Assuming Exogenous Input Prices

Finally, we re-estimate the production function under both DGPs using the method of Rubens
et al. (2024), but assume exogenous input prices. This effectively corresponds to the estima-
tor of Doraszelski and Jaumandreu (2018). We find that imposing exogenous input prices
when the true DGP is oligopsonistic and Hicks-neutral results in a serious bias in the mate-
rials coefficient, which is estimated at 0.492 whereas the true βm is 0.3, as can be seen in the
middle columns of Panel (a) in Table 1. The estimates are very similar when the the DGP is
factor-biased, as shown in Panel (b) of Table 1.

14



Table 1: Monte Carlo Simulations: Summary

(a) DGP 1: Hicks-neutral Hicks-neutral RWX(2024) RWX(2024)
estimator with exo. wage with endo. wage

Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.500 0.003 0.508 <0.001 0.516 0.072

sd(βl) true = 0 0.000 . 0.006 <0.001 0.002 0.002

βm true = 0.3 0.300 0.000 0.492 <0.001 0.299 0.003

ψl true = 1.614 1.615 0.009 0.000 . 1.670 0.251

corr(βl, ψl) 0.000 . . . -0.008 0.997

(b) DGP 2: Random coefficients Hicks-neutral RWX(2024) RWX(2024)
estimator with exo. wage with endo. wage

Est. S.E. Est. S.E. Est. S.E.

mean(βl) true = 0.5 0.805 0.048 0.503 0.001 0.512 0.043

sd(βl) true = 0.097 0.000 . 0.050 <0.001 0.098 0.008

βm true = 0.3 0.228 0.004 0.497 0.001 0.299 0.019

ψl true = 1.613 3.559 0.252 0.000 . 1.669 0.248

corr(βl, ψl) 0.000 . . . -0.111 0.033

Notes: This Table reports the results of the Monte-Carlo simulations, which are carried out with 200
iterations. Panel (a) reports the estimates when the true DGP is Hicks-neutral. The first two columns report
the Hicks-neutral estimator. The final four columns report the estimator of Rubens et al. (2024), both when
assuming exogenous wages (columns 3-4), and when allowing for endogenous wages (columns 5-6). Panel
(b) does the same but covers the case in which the true DGP is not Hicks-neutral, but features unobserved
random coefficients in production instead.
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4 Further Extensions

4.1 Nonsubstitutable Inputs

Rubens (2023) relaxes Assumption 2 by allowing for labor and materials to be perfect com-
plements, while still allowing labor to be substitutable with other inputs, such as capital K.
The updated production function is given by Equation (20), which is used in Rubens (2023)
to study cigarettes production in China. For tobacco leaves, and for many other types of in-
termediate inputs, it is more reasonable to assume perfect complementarity with labor, rather
than substitutability.

Qft = min{βllftβkkft; βmmft}Ωft (20)

As shown in Rubens (2023), which introduces imperfect factor market competition to the
model of De Loecker and Scott (2022) , the markup now takes on a different form, which
reflects that marginal costs are additive in labor and materials:

µft = (
αlft
βl
ψlft + αmft)

−1 (21)

In contrast to the models in Section 2 and 3, the first order conditions for labor and materials
are no longer linearly independent, rather, there is a single first order condition that takes
into account both input prices and input supply elasticities. The reason for this reduction
in the number of first order conditions is that firms do not choose labor and materials sep-
arately, as one input choice determines the other input quantity as well. This is a problem
for identification of either input price markdown, as one can no longer divide the two first
order conditions by each other to express the markdown in function of output elasticities and
revenue shares.

Of course, it is always possible that there is a third variable input, such as energy. If this
third input is substitutable with the input over which monopsony power is exerted (so far,
labor), than the markdown on that substitutable input can still be identified by solving for the
energy first order condition and the markup expression (21). However, this does not apply if
firms exert monopsony power on the non-substitutable input, which is materials in Equation
20. In this case, the markup expression becomes:

µft = (
αlft
βl
ψlft + αmftψ

m
ft)

−1 (22)
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Even if one can add variable inputs that substitute with labor, which results in additional first
order conditions, this does not allow to write the inverse intermediate input supply elasticity
ψmft as a function of output elasticities and data, because materials are perfect complements
to any of these other variable inputs. In this case, one needs to either estimate or impose a
markup, or estimate the factor supply elasticity, as discussed in Rubens (2023). This iden-
tification strategy has been implemented in various industries, including Chinese tobacco
manufacturing in Rubens (2023), German car manufacturing in Hahn (2024), French dairy
production in Avignon and Guigue (2022), and Chinese coal mining in Zheng (2024).

4.2 Labor Market Conduct

The labor market simulations in Sections 2 and 3 imposed that firms compete oligopsonis-
tically following Nash-Bertrand conduct. This model nests models of monopsonistic com-
petition, when firms become atomistic, meaning that labor market shares approach zero. In
this subsection, we consider other types of labor market competition than oligopsonistic or
monopsonistic competition.

Collusion

A first possibility is that firms collude on their input markets, coordinating their wage or em-
ployment choices rather than making these decisions independently. Delabastita and Rubens
(in press) considers markdown estimation when firms potentially collude. They show that,
maintaining the assumption of Hicks neutrality, the wage markdown can still be estimated
using the production approach, even if firms collude on their labor markets. Next, they com-
bine estimation of a labor supply model with the production estimates to identify conduct on
the labor market, and find that their collusion estimates align with the observed introduction
of a cartel in the Belgian coal mining industry.

Bargaining

In many labor market settings, firms and workers bargain over wages, rather than posting
wages (Caldwell, Haegele, & Heining, 2025). This bargaining can either be individual or
collective, through a labor union. Rubens (2024) considers cost-side markdown estimation
when wages are bargained. Its empirical application focuses on Illinois coal operators, which
bargain over wages with miner unions. A methodological challenge arises: to identify the
bargaining parameters, an estimate of the marignal revenue product of labor is needed, for
which the production function is estimated. However, the bargaining parameters need to be
known in order to identify the production function. Rubens (2024) addresses this problem
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using a fixed point estimator, in which production function estimation is nested in a loop over
which bargaining parameters are guessed. As is explained in Rubens (2024) , this estimation
procedure converges quickly towards a stable set of estimates for both the bargaining abilities
and the production function coefficients.

4.3 Differentiation and Multi-Product Firms

Product and Input Differentiation

Assumption 3 imposed that both goods and inputs are homogeneous, which is clearly a
strong assumption in many settings. Although vertical product differentiation can be al-
lowed using a price control in the production function (De Loecker et al., 2016), most goods
are horizontally differentiated as well. Hahn (2024) addresses this challenge by estimating a
hedonic price model for car manufacturers, which incorporates car characteristics, in addi-
tion to a production function. This model is then used to estimate markdowns and examine
bargaining between car manufacturers and parts producers. A distinct challenge is raised
when the inputs, rather than the products, are differentiated. Lamadon, Mogstad, and Setzler
(2022) addresses this challenge by allowing for heterogeneous worker quality using matched
employer-employee data.

Multi-Product Firms

Production function estimation with multi-product firms is challenging even if input markets
are perfectly competitive, because inputs are usually not disaggregated at the product level
in the data. Various approaches have been developed to address this challenge (De Loecker
et al., 2016; Orr, 2022; Dhyne, Petrin, Smeets, & Warzynski, 2022; Valmari, 2023) without
allowing for imperfect factor market competition. In contrast, Avignon and Guigue (2022)
develop a model that features both imperfect factor market competition and multi-product
firms. Their approach leverages the usage of engineering data to assign input costs to the
various products. They apply the model to estimate factor price markdowns and goods price
markups for French dairy industries.

4.4 Adjustment Frictions

Assumption 5 imposed that both materials and labor are variable and static inputs. In many
applications, it is reasonable that at least a subset of these inputs will be subject to adjustment
frictions, such as hiring or firing costs. Although estimation of the production function is not
hampered by such adjustment frictions, as the associated timing assumptions can be easily

18



adapted, they do pose a challenge for markdown identification using the production function
approach because the markup and markdown expressions (8) and (10) follow from solving
a static cost minimization problem. Adjustment frictions lead to additional wedges between
marginal revenue products and input prices that are unrelated to the exercise of monopsony
power. One possibility to separately identify adjustment costs from monopsony distortions
is to, again, jointly estimate a labor supply model and a production model, which is carried
out in Chan, Mattana, Salgado, and Xu (2024) using Danish data.

4.5 No Competitive Input Market

Finally, Assumption 4 imposed that intermediate input prices are exogenous to firms. This
is a commonly made assumption in the literature (Morlacco, 2017; Brooks et al., 2021; Yeh
et al., 2022; Delabastita & Rubens, in press), and is needed to point-identify the markdown
when only using the production function, as made clear by Equation (10). In case all input
markets are imperfectly competitive, meaning that no input price is exogenous, there are two
potential solutions. First, one could impose a model of imperfect competition and estimate
a factor supply curve for one of the inputs, as carried out in Section 3, and still identify the
markdown of the remaining inputs using the production approach. Alternatively, Treuren
(2022) proposes estimating a revenue production function, in contrast to the quantity pro-
duction functions used in this article so far, to identify wage markdowns without having
to assume competitive material markets. Whereas the benefit of allowing for endogenous
material prices is clear, using a revenue production function comes at the cost of imposing
homogeneous goods demand elasticities between firms, which restricts the set of models of
imperfect competition on the product market one can allow for. As with any assumption,
the tradeoff between imposing additional restrictions on product market competition while
relaxing the assumptions in terms of input market competition is specific to the empirical
application, and depends on the type of industry at hand.

5 Conclusions
In this article, we review ‘production approaches’ to estimate factor price markdowns. We
discuss the commonly made assumptions in this class of estimators and test this class of
estimators using Monte Carlo simulations for oligopsonistic labor markets in which firms
compete in wages in a static Nash-Bertrand equilibrium. We find that when production is
Hicks-neutral, existing ‘cost-side’ markdown estimators recover markdowns consistently.
This implies that it is possible to estimate wage markdowns without having to specify and
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estimate a labor supply model, and while remaining agnostic about the underlying model
of labor market conduct. However, we find that allowing for unobserved technological het-
erogeneity in production leads to severely biased estimates of factor price markdowns using
the production approaches that rely on Hicks neutrality. When implementing the estimation
procedure suggested by Rubens et al. (2024), which is designed to allow for departures from
Hicks-neutrality, we find that the production function coefficients and heterogeneity can be
estimated consistently in the presence of imperfect labor market competition. Finally, we
discuss approaches in the literature that have extended cost-side markdown estimation to re-
lax other assumptions, such as allowing for nonsubstitutable inputs, different types of labor
market conduct, and multi-product production.
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