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chanical coal cutters, a new technology, by 21%, thereby lowering marginal costs.

However, output would still have decreased by 21%, meaning that the deadweight
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1 Introduction

There is increasing empirical evidence for the existence of ‘monopsony’ or ‘buyer power’

across various industries, countries, and types of factor markets.1 Prior research on the

welfare consequences of ‘classical’ monopsony or oligopsony power, such as Berger et

al. (2022) and Lamadon et al. (2022), has typically assumed firms’ technology choices

and investment to be exogenous to the degree of monopsony power. However, employers’

investment decisions are endogenous if employers need some degree of monopsony power

to recover the fixed costs incurred when investing in human and/or physical capital.

In this paper, I examine the welfare effects of monopsony power by disentangling these

two opposing forces. On the one hand, monopsony power leads to deadweight loss because

it makes employers cut back on input usage in order to push down input prices. On the other

hand, monopsony power can incentivize the adoption of new productivity-enhancing tech-

nologies because it allows employers to appropriate more of the rents created by this tech-

nology adoption. This is a version of the classical hold-up problem of Williamson (1971).

The net effect of monopsony power on equilibrium output, consumer surplus, and total

welfare is ambiguous, as it depends on the relative magnitude of the deadweight loss and

technology adoption channels. This trade-off between anti-competitive distortions and en-

dogenous human capital investment plays an important role in various debates around labor

market power, such as regulation of non-compete agreements (Starr, Prescott, & Bishara,

2021; Shi, 2023), buyer power and horizontal merger control (Hemphill & Rose, 2017;

Loertscher & Marx, 2019)

I start the paper with a theoretical model of labor demand and supply that allows for both

monopsony-induced deadweight loss and endogenous investment. Although the model is

written in terms of employers and employees, it applies to vertical relationships between

buyers and sellers more generally. The model features employers that face upward-sloping

1See literature reviews by Ashenfelter et al. (2010) and Manning (2011), and recent papers by, among many
others, Naidu et al. (2016); Berger et al. (2022); Morlacco (2017); Lamadon et al. (2022); Kroft et al. (2020);
Rubens (2023); Chambolle et al. (2023).
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labor supply curves and negotiate over wages with workers using a linear wage contract in

a ‘Nash-in-Nash’ bargaining model (Horn & Wolinsky, 1988). The model collapses to the

classical monopsony model, in which employers unilaterally post wages, in the special case

when all bargaining power is on the side of the employers. Employers combine different

labor types to produce output using a constant elasticity of substitution (C.E.S.) produc-

tion function, and choose between a menu of technologies. These technology decisions

determine the employers’ Hicks-neutral and factor-specific productivity levels, and are in-

curred at a fixed cost. Employers sell their output on product markets where they face a

downward-sloping goods demand curve. Simulating this model, I find that the relationship

between equilibrium output and employee bargaining power is monotonically increasing

when assuming exogenous technology usage, as only the deadweight loss mechanism is at

play. However, when allowing for endogenous technology adoption, the output-employee

power relationship becomes an inverted U-shape, as the deadweight loss and endogenous

investment mechanisms counteract each other. The output-maximizing bargaining weight

depends on the relative size of the curvature of the labor supply curve and of the productiv-

ity effects of the technology.

Given that the equilibrium effect of employer power on output is ambiguous, I carry

out an empirical application to quantify the relative importance of the deadweight loss and

endogenous investment mechanisms. I study how the mechanization of the Illinois coal

mining industry between 1884 and 1902 was affected by market power held by firms over

their miners. There are two main reasons why this provides a unique and interesting setting

to study the relationship between buyer power and innovation. First, the introduction of

coal cutting machines in the U.S. in 1882 provides a large observed technological shock.

Second, 19th century Illinois coal mining towns are a textbook example of monopsonistic

labor markets, with geographically isolated local labor markets, which makes it likely that

employers had some market power over their workers.

I implement an empirical version of the model to fit the coal industry setting, and es-

timate it using a novel and uniquely rich archival dataset on mine-level production, coal
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prices, input quantities and prices, technology usage, and geological data. I rely on ob-

served variation in the thickness of coal veins as cost shifters to estimate coal demand,

and on international coal price shocks and exporting data to estimate labor supply. The

identification of the production function relies, as usual, on timing assumptions on input

choices in function of both Hicks-neutral and labor-augmenting productivity shocks. In line

with anecdotal historical evidence, I find that cutting machines were unskill-biased, simi-

larly to many other technologies that were developed throughout the 19th century (Mokyr,

1990; C. D. Goldin & Katz, 2009). Using the estimated production, labor supply, and

coal demand models, I estimate the relative bargaining weights of the employers and min-

ers’ union. I find that employer power over miners increased substantially throughout the

1890s: in 1890, employers extracted one third of the total rents created in the industry,

whereas they extracted almost half of the rents by 1902. Finally, I estimate the fixed costs

of cutting machine usage by comparing the variable profit gains from machine adoption to

the observed machine usage rates.

Using the estimated model, I numerically solve for output and input quantities, coal

prices, miner wages, and machine usage in the observed equilibrium, and in two counter-

factual equilibria. In a first counterfactual, I examine how all equilibrium outcomes and

welfare would have changed if employer power would have increased by one standard de-

viation. Second, I examine the same counterfactual exercise, but hold cutting machine

usage fixed. This second counterfactual is informative of the relative importance of the

endogenous machine usage mechanism compared to the deadweight loss effect. I find that

increased employer power would increase cutting machine usage by 21% by the end of

the panel in 1902. Hence, both total factor productivity and skill-augmenting productivity

would have increased in response to an increase in employer power. However, equilib-

rium output would have decreased by 21%, because the deadweight loss effect dominates

the marginal cost decrease of increased cutting machine adoption. Endogenous capital in-

vestment alters the welfare effects of increased labor market power. If capital investment

would be exogenous, the increase in employer power would reduce consumer, worker, and
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total welfare by 18.0%, 33.3%, and 9.3 % respectively. However, allowing for endoge-

nous capital investment reduces these welfare losses to 16.4%, 31.9%, and 7.2%. The total

welfare losses from monopsony power are, hence, overestimated by nearly a quarter when

assuming that investment is exogenous to the level of employer power.

This paper relates to three distinct literatures. First, I contribute to the literature on

the welfare consequences of monopsony power by considering endogenous technological

change. Existing work on classical monopsony/oligopsony power usually focuses on dead-

weight loss and/or on misallocation (Berger et al., 2022; Lamadon et al., 2022; Jarosch,

Nimczik, & Sorkin, 2019; Morlacco, 2017; Rubens, 2023), but keeps technology choices

fixed. In contrast, I show that endogenous technology choices present an additional chan-

nel through which input market power affects welfare. On the other hand, there is work on

hold-up in a class of labor search models (Acemoglu & Shimer, 1999; Shi, 2023) and in ef-

ficient bargaining models (Abowd & Lemieux, 1993; Van Reenen, 1996; Menezes-Filho &

Van Reenen, 2003), but these models do not feature monopsony-induced deadweight loss.

I contribute to these literatures by empirically investigating and comparing monopsony-

induced deadweight loss to the inefficiency created by hold-up, in order to obtain a net

effect of employer power on equilibrium output and welfare.

Second, this paper builds on the vertical relations literature. In contrast to existing work

on hold-up (Williamson, 1971; Joskow, 1987; Zahur, 2022), I allow for monopsony dis-

tortions by including upward-sloping marginal cost curves of the suppliers, and I also use

a model with multiple substitutable inputs, rather than a single input. In contrast to the

literature that studies the effects of buyer power on technology choices of suppliers (Just &

Chern, 1980; Huang & Sexton, 1996; Köhler & Rammer, 2012; Parra & Marshall, 2021),

I focus on its effects on the technology choices of the buyers.

Finally, this paper relates to the literature on labor market power during the late 19th

century, such as Boal (1995), Naidu and Yuchtman (2017), and Delabastita and Rubens

(2022), and on technological change during this same time period (Atack, Bateman, &

Margo, 2008; C. Goldin & Katz, 1998; Katz & Margo, 2014; Hornbeck, Hsu, Humlum,
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& Rotemberg, 2024). I bring these two literatures together by studying how employer

power during the late 19th century affected the adoption of directed technologies, and by

quantifying the resulting welfare effects on consumers, producers, and workers.

The remainder of this paper is structured as follows. Section 2 contains the theoretical

model. Section 3 discusses the data, industry background, and the empirical model. Section

4 covers the estimation of the model and the counterfactual simulations.

2 Labor Market Power and Investment

I start with a theoretical model to examine the welfare effects of labor market power when

allowing for both deadweight losses and endogenous investment.

2.1 Primitives

Firms f produce output Qf using two variable inputs Hf and Lf . I denote these as high-

and low-skilled labor and let firms be employers, but the model can be interpreted as whole-

salers f buying inputs from manufacturers as well. I rely on a C.E.S. production function

with two inputs that are substitutable at a constant elasticity σ. For simplicity, I assume

constant returns to scale, but relax this in Appendix C.1. Skill-augmenting productivity is

denoted Af , the low-skilled labor coefficient is βl, and Hicks-neutral productivity is Ωf .

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f

) σ
σ−1

Ωf (Kf ) (1)

Firms choice their capital stock K, which enters the production function in two ways.

First, capital changes the skill-augmenting productivity term Af (Kf ). Second, capital can

change Hicks-neutral productivity Ωf (Kf ). Firms sell their product at a price Pf . Con-

sumer demand for the good is given by a standard horizontal differentiation demand sys-

tem, with an average industry-level price P0, demand shocks ξf , and a constant demand
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elasticity η.

Qf =
(Pf
P0

)η
ξf (2)

Firms are differentiated by an amenity term ζf , the average industry wage is equal to

W0. I allow the outside option of high-skilled labor Zf to be an upward-sloping curve, with

constant inverse elasticity ψ. In contrast to models with a constant outside option value,

such as Abowd and Lemieux (1993), an increasing outside option generates an upward-

sloping labor supply curve, which allows for the possibility of monopsonistic behavior by

employers. An increasing outside options curve can be rationalized by the fact that workers

are heterogeneous in terms of their outside options, and that firms cannot wage-discriminate

in function of these worker-specific outside options. Hence, the labor supply curve to each

firm is upward-sloping: hiring an extra worker requires a higher wage to compensate the

higher outside option of the marginal worker compared to the outside options of the infra-

marginal workers. In contrast, the outside option of low-skilled labor is assumed to be

equal to a constant V . Hence, firms pay low-skilled wages V , and low-skilled labor supply

is perfectly elastic.

Zf =
W0

1 + ψ

(Hf

ζf

)ψ
(3)

High-skilled workers are unionized at the firm level. The utility of the labor union is at

firm f is denoted Πu
f , and is defined as the difference between high-skilled earnings and

the outside option to high-skilled workers.

Πu
f = (Wf − Zf )Qf

Employer profits are denoted as Πd
f :

Πd
f = PfQf −WfHf − V Lf − ϕKf
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2.2 Strongly Efficient Bargaining

Behavior and Equilibrium

For the purpose of illustration, I start with a Nash bargaining model in which a labor union

and employers collectively bargain over both employment and wages, before moving to

model where they only bargain over wages. Employers and unions bargain over both em-

ployment and wages in a Nash bargaining protocol, with γ indicating union bargaining

power.

max
Hf ,Lf ,Wf

(Πu
f )
γf (Πd

f )
1−γf

The model implies that the union and employers jointly optimize joint profits, and split the

surplus according to the bargaining parameters γ. This model is equivalent to the ‘strongly

efficient’ bargaining model in Abowd and Lemieux (1993), but with the important distinc-

tion that the outside option of the workers is increasing, which implies an upward-sloping

labor supply curve. The analog of this feature in vertical industry models would be that

sellers face increasing marginal costs. The usefulness of the strongly efficient bargaining

model is that it does not feature any monopsony distortions, only endogenous technology

choices. This makes it a useful benchmark against which the full model can be compared.

Taking the first order condition for the high-skilled wage results in:

Wf = (1− γf )(Zf ) + γf (
PfQf − V Lf

Hf

) (4)

The first order conditions for the labor inputs are given by:

P0(
1 + η

η
)Q

1
η

f (
Qf

Hf

)
1
σ (ΩfAf )

σ−1
σ = W0(

Hf

ζf
)ψ (5)

P0(
1 + η

η
)Q

1
η

f (
Qf

Lf
)

1
σ (Ωf )

σ−1
σ βl = V (6)

Equilibrium (P ∗
f , Q

∗
f , H

∗
f , L

∗
f ) is the solution of equations (1), (2), (5), and (6): the pro-
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duction function, the goods demand curve, and the two input demand equations. Wages are

determined in function of the bargaining parameter, as described in Equation (4), and do

not have any effect on equilibrium output, inputs, and goods prices.

Effects of Employer Power: Endogenous Investment

Holding the capital stock Kf fixed, employer power (1 − γf ) does not affect equilibrium

output, consumer prices, or input quantities, only the wage Wf . However, employer power

affects investment. Suppose firms need to pay a capital cost ϕ per unit of capital Kf ,

which is a fixed cost as it does not vary with production. We assume that capital increases

employer variable profits, which implies that it increases skill-augmenting and/or Hicks-

neutral productivity. This is an uncontroversial assumption: if capital would not increase

buyer variable profits, firms would never invest unless receiving a subsidy. Proposition

1 says that under efficient bargaining, employer power increases technology adoption of

firms.

Proposition 1 Under strongly efficient bargaining, buyer power increases capital invest-

ment:

∂Kf

∂(1− γf )
> 0

The proof of this theorem is straightforward. Denoting joint profits as Πj ≡ Πd + Πu, the

effect of capital on employer profits Πd is given by:

∂Πd
f

∂Kf

=
∂Πd

f

∂Af

∂Af
∂Kf

− Φ = (1− γf )
∂Πj

f

∂Af

∂Af
∂Kf

− Φ

Taking the derivative with respect to employer power (1− γ) gives:

∂

∂(1− γf )

(∂Πd
f

∂Kf

)
=
∂Πj

f

∂Af

∂Af
∂Kf

This last term is positive under the assumption that the technology is variable profit-enhancing.
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The intuition behind ¨Proposition 1 is that the higher buyer power is, the large the share

of the rents created by capital investment get appropriated by the buyer. Hence, this in-

creases the incentive for the buyer to invest. This a reformulation of the well-known hold-

up mechanism from Williamson (1971), which hinges on the assumption that workers and

firms can only write incomplete contracts that do not condition on investments by the em-

ployer. The wage contracts used in the Illinois coal mining industry are an example of such

an incomplete contract.

Corrolary 1 Under strongly efficient bargaining, buyer power increases equilibrium out-

put

It follows immediately from Proposition 1 that employer power increases equilibrium

output in the strongly efficient bargaining model. Given the strong efficiency assumption,

employer power does not affect output conditional on technology adoption Kf . How-

ever, employer power increases technology adoption, hence, decreases marginal costs. This

marginal cost reduction results in increased equilibrium output.

2.3 Weakly Efficient Bargaining

In reality, unions and employers often do not contract on both wages and employment, but

only bargain over wages. Assuming they bargain over a linear wage contract, two types

of bargaining models are possible. First, it could be that employers choose employment

and bargain with workers who supply labor perfectly elastically, as in Abowd and Lemieux

(1993).2 Such a model does not allow for monopsony distortions, as the labor supply curve

is not upward-sloping. Instead, in this paper I consider a different bargaining protocol: I

assume that workers decide how much to work, and that they simultaneously bargain over

wages with the employers. There are two reasons for making this modeling assumption.

First, this model has the benefit of collapsing to the classical monopsony model when as-

2In the vertical relations literature, this is similar to models where buyers choose output prices on their product
market and simultaneously bargain wholesale prices with their supplier, such as in Crawford and Yurukoglu
(2012) and Grennan (2013).
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suming perfect buyer power (γ = 0), with the ensuing monopsony distortion. Second,

as will be discussed more in detail in Section 3, the empirical evidence shows that a large-

scale miner’s strike in 1898, which resulted in an increased bargaining weight of the miner’s

union, was followed by increased output, rather than decreased output. This finding aligns

with the model in which employers exert monopsony power, whereas it opposes a sequen-

tial monopoly model in which miners exert market power.3

The labor union decides on how much labor it is willing to supply for any given wage

level, in order to maximize union profits Πu, which leads to the following upward-sloping

high-skilled labor supply curve:

Wf = W0

(Hf

ζf

)ψ
(7)

Wages are bargained over between the labor union and the employers according to their

relative bargaining power γf :

max
Wf

(Πu
f )
γf (Πd

f )
1−γf

The resulting wage equation is given by Equation (8):

γf

(
(1− ∂Zf

∂Wf

)Hf +
∂Hf

∂Wf

(Wf − Zf )
)
(PfQf −WfHf − V Lf )

+ (1 − γf )(Wf − Zf )Hf (Pf
∂Qf

∂Hf

∂Hf

∂Wf

−Hf −Wf
∂Hf

∂Wf

) = 0 (8)

Finally, low-skilled workers are chosen by the employers to maximize their profits:

max
Lf

(Πd
f )

The low-skilled labor demand function is the same as in the strongly efficient bargaining

3In the latter case, increased bargaining power of the labor union should result in a decreased in equilibrium
output, rather than an increase.
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case, equation (6).

I rely on the ‘Nash-in-Nash’ equilibrium concept of Horn and Wolinsky (1988). Equi-

librium (Q∗
f , P

∗
f ,W

∗
f , H

∗
f , L

∗
f ) is given by equations (1), (2), (7), (6), (8), which are the

production, goods demand, high-skilled labor supply, low-skilled labor demand, and wage

bargaining equations.

Effects of Employer Power: Endogenous Investment vs. Deadweight Loss

In contrast to the strongly efficient bargaining case, an increase in buyer power (1 − γf )

now decreases equilibrium output when holding capitalKf fixed. The reason for this is that

employer power allows employers to exercise monopsony power, which creates deadweight

loss. In the extreme case when γf = 0, employers set wages at a fixed markdown in

function of the labor supply elasticity, which negatively distorts equilibrium labor usage

and output.

On the other hand, buyer power still affects capital investment. The effect of capital

investment on buyer profits is given by:

∂Πd
f

∂Kf

=
∂Πd

f

∂Af

∂Af
∂Kf

= (1− γf )
∂Πj

f

∂Af

∂Af
∂Kf

− Φ

Taking the derivative with respect to union power γ gives:

∂

∂γf

(∂Πd
f

∂Kf

)
= −

∂Πj
f

∂Af

∂Af
∂Kf

+ (1− γf )
∂

∂γf
(
∂Πj

f

∂Af

∂Af
∂Kf

)

The first term is still negative: buyer power increases the buyer’s share of the profit increase

from technology adoption. The second term is the effect of buyer power on the joint profit

effect of capital investment, and is no longer zero given that union power affects equilibrium

output and input quantities. Numerically simulating the model reveals that the sign of the

second term is ambiguous, as we show below.

As a result, the net effect of buyer power on equilibrium output is ambiguous. On the

one hand, increased buyer power decreases output through the monopsony distortion. On
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the other hand, buyer power increases technology usage, which reduces marginal costs,

and hence increases output. Which of these effects dominates depends on the relative

magnitude of the deadweight loss and the endogenous investment mechanism. Hence, it is

a function of, among others, the labor supply elasticity, which determines the size of the

deadweight loss, the productivity effects of the technology, which determine the marginal

cost effects of the technology. In the empirical application, I will quantify the relative size

of these effects in order to examine how counterfactual changes in employer power affect

equilibrium output, producer surplus, consumer surplus, and worker welfare.

Simulation

To illustrate the importance of exogenous technology usage for the welfare effects of labor

market power, I simulate a parametrized version of the model. The parametrization is

specified in Appendix B.1. I calibrate the goods demand elasticity at η = −7 and the

inverse labor supply elasticity at ψ = 0.25, following the estimates for U.S. construction

workers in Kroft et al. (2020). I consider a new technology that increases H-augmenting

productivity A by 5%, and increases TFP Ω by 20%.

Figure 2a plots equilibrium technology usage K against employee bargaining power

γf . The red solid line depicts the model in which technology usage is allowed to change

in function of employee bargaining power. As was explained in the theoretical model,

technology usage decreases with the level of employee bargaining power. As a comparison,

the blue dashed line depicts the model in which technology usage is exogenous to the

degree of bargaining power. In this model, technology usage is fixed equal to average

technology usage in the endogenous adoption model.

Figure 2 shows equilibrium output Q as a function of employer power (1 − γ). Under

the assumption of exogenous technology usage, the blue solid line, output monotonically

decreases with employer power. As was explained earlier, this is due to deadweight loss

induced by the employer’s monopsony power. The wage markdown set by the employer

shrinks to zero as employer bargaining power goes to zero, reducing deadweight loss to

zero. However, allowing for endogenous capital usage turns the output-bargaining power
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relationship into an inverted U-shape. At low levels of employer power, the output decrease

due to monopsony power is countered by the reduction in marginal costs due to increased

technology usage. Under the parametrization of the model, the positive output effect of

increased technology usage outweighs deadweight loss until the bargaining weight of the

employer is 0.35. Hence, equilibrium output is maximized at this level of employer power.

Figure 1: Bargaining Power, Capital Investment, and Output

(a) Capital Investment (b) Output

Notes: Panel (a) shows how capital investment changes with the degree of employer power in the simulated
model. Panel (b) shows output in function of the employer’s bargaining parameter, both when assuming
exogenous investment and when letting investment vary with employer power.

The output-maximizing degree of employer power depends on the labor supply elas-

ticity and on the productivity effects of the technology. If labor supply becomes more

inelastic, deadweight loss becomes larger, so the relative importance of the technology

usage mechanism compared to deadweight loss falls. As shown in Appendix B.1, the

output-maximizing employer weight falls from 0.35 to 0.18 if the labor supply elasticity

is ψ = 0.5 rather than ψ = 1.5. Second, the larger the productivity effects of the tech-

nology, the higher employer power should be, because higher productivity effects increase

the relative importance of the technology usage mechanism compared to deadweight loss.

The simulations in Appendix B.1 show that a Hicks-neutral productivity effect of 10%,

compared to 20% in the baseline, decrease the output-maximizing bargaining weight from

0.35 to 0.10. Moreover, the output gain between a scenario of full absence of employer
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power and the output-maximizing employer weight of 0.10 is almost zero. Equilibrium

output becomes almost a monotonically decreasing function of employer power, meaning

that deadweight loss dominates the technology usage mechanism at any level of employer

power.

3 Empirical Model: Illinois Coal Operators

Simulating the model in the previous section reveals that the relationship between em-

ployer power and output is ambiguous, depending on the relative magnitude of monopsony-

induced deadweight loss and endogenous technology adoption mechanisms. In this section,

I quantify the relative magnitude of these forces by estimating the model in the context of

the 19th century Illinois coal mining industry.

3.1 Data

The main dataset used is derived from the Biennial Report of the Inspector of Mines of

Illinois, which was digitized in the context of this project. I observe every bituminous coal

mine in Illinois between 1884 and 1902 at two-year intervals, which results in 8356 obser-

vations. The dataset records the name of the mine, the mine operator’s name, yearly coal

extraction, average employee counts for both skilled and unskilled workers, days worked,

and a dummy for cutting machine usage per year. Materials are measured as the total num-

ber of powder kegs used in a given year. Other technical characteristics are observed for a

subset of years, such as dummies for the usage of various other technologies (locomotives,

ventilators, longwall machines), and technical characteristics such as mine depth and the

mine entrance type (shaft, drift, slope, surface). Not all of these variables are used in the

analysis, given that some are observed in a small subset of years.4

I observe the average piece rate for skilled labor throughout the year and the daily wage

for unskilled labor from 1888 to 1896. At some of the mines, ‘wage screens’ were used,

4A full list of observed variables and the years in which they are observed is in Appendix Table A6.
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which means that skilled workers were paid only based on their output of large coal pieces,

rather than on their total output. This introduces some measurement error in labor costs.

However, the data set reports the usage of wage screens in 1898, and shows that they were

used in mines representing merely 2% of total employment. Skilled wages and employment

are separately reported for the summer and winter months between 1884 and 1894. For

some years I observe additional variables such as mine capacities, the value of the total

capital stock and a break-up of coal sales by destination. Wages and employee skill types

are not observed in 1896. I deflate all monetary variables using historical CPI estimates

from Hoover (1960). The reported monetary values are all in 1884 U.S. dollars.

In addition to the main biennial dataset, I utilize different other datasets. First, the in-

spection report from 1890 contains monthly data on wages and employment for both types

of workers, and monthly production quantities for a sample of 11 mines that covers 15% of

skilled and 9% of unskilled workers. Second, town- and county-level information from the

1880 and 1900 population census and the censuses of agriculture and manufacturing are

collected as well. Third I collect information on coal cutting machine costs from Brown

(1889). I refer to Appendix A for more details regarding the data sources and cleaning

procedures.

3.2 Industry Background

The setting of the empirical application is the Illinois coal mining industry between 1884

and 1902. Throughout this time period, this industry grew rapidly: annual output tripled

from 10 to 30 megatons between 1884 and 1902. This was both due to an increase in the

average mine size and to an increase in the number of mines from 680 to 898.

Extraction Process

The coal extraction process consisted of three consecutive steps. First, the coal vein had

to be accessed, as it lied below the surface for 98.0% of the mines and 99.4% of output.

Second, upon reaching the vein, the coal wall was ‘undercut’, traditionally by hand, but
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from 1882 onward also with coal cutting machines. The mechanization of the cutting pro-

cess is considered to be the most significant technological change during this time period

(Fishback, 1992). Third, coal had to be transported back to the surface and sorted from im-

purities. The hauling was done using mules or underground locomotives. Mines used two

types of intermediate inputs. First, black powder was used to blast the coal wall. This pow-

der and other materials, such as picks, was purchased and brought by the miners. Second,

coal itself was used to power steam engines, electricity generators, and air compressors.

Figure 2(b) plots the ratio of total output over total days worked at mines that used cutting

machines (‘machine mines’) and mines that did not (‘hand mines’). Daily output per worker

increased from 2 to 3.3 tons for hand mines, and from 2.3 to 4.1 tons for machine mines.5

Although different coal types exist, the mines in the data set all extract bituminous coal.

There might be minor quality differences even within this coal type due to variation in sul-

fur content, ash yield, and calorific value (Affolter & Hatch, 2002). Most of this variation

is, however, dependent on the mine’s geographical location.

Occupations

Coal mining involved a variety of occupational tasks. The inspector report from 1890

reports wages at the occupation-level, and this subdivision is reported in Appendix Table

A1 for the 20 occupations with the highest employment shares, together covering 97% of

employment. Three out of five workers were miners, who did the actual coal cutting. This

required a significant amount of skill: in order to determine the thickness of the pillars,

miners had to trade off lower output with the risk of collapse. The other 40% of workers

did a variety of tasks such as clearing the mine of debris (‘laborers’), hauling coal to the

surface using locomotives or mules (‘drivers’ and ‘mule tenders’), loading coal onto the

mine carts (‘loaders’), opening doors and elevators (‘trappers’), etc. The skills required

to carry out these tasks were usually less complex than those of the miners, and were

moreover not specific to coal mining: tending mules or loading carts are general-purpose

tasks, in contrast to undercutting coal walls.

5This series is adjusted for the reduction of hours per working day in 1898, as explained in Appendix A.
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Figure 2: Output, Inputs, and Prices

(a) Cutting Machine Usage (b) Output per Worker

(c) Wages and Prices (d) Skilled/Unskilled Labor Ratio

Notes: Panel (a) plots the evolution of cutting machine usage, both as a share of firms and weighted by
output. Panel (b) documents the evolution of output per worker at mines where coal is cut manually, and at
mines where cutting machines are used. Panel (c) shows the evolution of daily skilled wages and of the coal
price per ton in Illinois, weighted by employment and output respectively. Panel (d) shows the evolution of
the aggregate ratio of skilled to unskilled workers in Illinois for both hand and machine mines.

The difference in industry-specific skills are reflected in daily wages: miners earned

higher daily wages than any other mining employee type, except for ‘pit bosses’ (middle

managers), and ‘roadmen’, who maintained and repaired mine tracks, but these two cat-

egories of workers represent barely 2% of the workforce. The higher wages of miners

cannot be explained as a risk premium, because nearly all other occupations worked below

the surface as well, and were hence subject to the same risks of mine collapse or flooding.
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From this point onward, I classify workers into two types: miners, which I will denote as

‘skilled labor’, and all other employees, which are called ‘unskilled labor’. This follows

the categorization of labor provided in the data set.

Technological Change

The first mechanical coal cutter in the U.S.A. was invented by J.W. Harrisson in 1877, but

it was merely a prototype.6 The Harrisson patent was acquired and adapted by Chicago

industrialist George Whitcomb, whose ‘Improved Harrison Cutting Machine’ was released

in 1882.7 As shown in Figure 2a, the share of Illinois coal mines using a cutting machine

increased from below 2% to 9% between 1884 and 1902. Mechanized mines were larger:

their share of output increased from 7 to 30% over the same time period. The mechanization

of the hauling process, which replaced mules with underground locomotives, was another

source of technical change, and started during the 1870s. By the start of the panel in 1884,

mining locomotives were already widely used in Illinois: the share of output mined in

locomotive mines was around 90%.

As was shown in Figure 2(b), output per worker was higher in cutting machine mines.

The composition of labor was also different: in Figure 2(d), I plot the ratio of the total

number of skilled labor-days over the number of unskilled worker-days per year.8 Mines

without cutting machines used between 3 and 4 skilled labor-days per unskilled labor-days

throughout the sample period, compared to 2 to 3 skilled labor-day per unskilled worker-

day for machine mines. In every year, except 1894, machine mines used less skilled per un-

skilled worker. The skilled-unskilled labor ratio was on average 16.5% lower for machine

mines compared to hand mines, and this difference is statistically significant. However,

this difference is not necessarily a causal effect of cutting machines on skill-augmenting

productivity: mines with higher productivity levels were probably more likely to adopt cut-

6Simultaneously, prototypes of mechanical coal cutting machines were invented in Northern England in the
late 1870s (Reid, 1876; Ackermann, 1902).

7A picture of the patent is in Appendix Figure A5. The spatial diffusion of cutting machines is shown in
Appendix Figure A3.

81890 is omitted for machine mines in 1890 due to employment being unobserved for most machine mines
in that year.
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ting machines. For estimates of the causal effect of cutting machines on total factor and

factor-augmenting productivity levels, I refer to the empirical model in the next section.

Anecdotal evidence suggests that cutting machines led to the substitution of unskilled for

skilled workers. In his 1888 report, the Illinois Coal Mines Inspector asserts:

“Herein lies the chief value of the [cutting] machine to the mine owner. It

relieves him for the most part of skilled labor [...] it opens to him the whole

labor market from which to recruit his forces [...] The mining machine is in

fact the natural enemy of the coal miner; it destroys the value of his skill and

experience, and reduces him to the rank of a common laborer” (Lord, 1892).

In contrast, underground mining locomotives had very different effects: rather than sav-

ing on the skilled miners, locomotives replaced mules and some of the unskilled workers

involved in the hauling process, such as mule tenders.

Labor Markets

Skilled workers received a piece rate per ton of coal mined, whereas unskilled workers

were paid a daily wage.9 Converting the piece rates to daily wages, the net salary of skilled

labor was on average 22% higher compared to unskilled labor. ‘Net salary’ means net of

material costs and other work-related expenses. Rural Illinois was, and still is, sparsely

populated: the median and average population sizes of the towns in the dataset were 845

and 1706 inhabitants. In the average town, 16% of the population was employed in a coal

mine. Considering that women and children under the age of 12 did not work in the mines,

this implies that a large share of the local working population was employed in coal mining.

Of all the villages, 42% had just one coal firm, and 75% had three or less coal firms. Two-

thirds of all employees worked in a village with three or less coal mines. Although most

of the villages in the data set were connected by railroad, these were exclusively used

for freight: passenger lines only operated between major cities (Fishback, 1992). Given

that the average village was 7.4 miles apart from the next closest village, and that skilled
9Piece rates were an incentive scheme in a setting with moral hazard, as permanent miner supervision would
be very costly.
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workers had to bring their own supplies to the mine, commuting between villages was not

an option, and the mining towns can be considered as isolated local labor markets. Most

roads were unpaved and automobiles were not yet introduced. In order to switch employers,

miners had to migrate to another town.

First attempts to unionize the Illinois coal miners started around 1860, without much

success (Boal, 2017). Although Illinois coal miners were unionized, for instance through

the United Mine Workers of America and the Knights of Labor, union power was con-

trained by the use of ‘yellow-dog’ labor contracts that forced employees not to join a trade

union.10 A major strike in 1897-1898 led to a modest increase in wages, to a reduction of

working hours, and to the introduction of annual wage negotiations, which took place in

January (Bloch, 1922). Nevertheless, industrial relations remained tense for the ensuing

years (Bloch, 1922).

Wages were bargained over in a tiered negotiation procedure: first, a general agreement

was made at the state-industry level, afterwards mine owners individually negotiated wages

with miner representatives (Bloch, 1922). There was no minimum wage law. In contrast to

other states, the mines in the data set did not pay for company housing of the miners (Lord,

1883, 75), which would otherwise be a labor cost in addition to miner wages.

Figure 2(c) reports the aggregate skilled labor daily wage, defined as the total wage bill

spend on skilled labor over the total number of skilled labor-days. The fast growth in labor

productivity did not translate into higher wages until 1898, as daily miner wages remained

around $1.8. After the subsequent introduction of wage bargaining, wages rose.

Coal Markets

Coal was sold at the mine gate, and there was no vertical integration with post-sales coal

treatment, such as coking. On average 92% of the mines’ coal output was either sold to

railroad firms or transported by train to final markets. The remaining 8% was sold to local

consumers. The main coal destination markets for Illinois mines were St. Louis and, to a
10These contracts were criminalized in Illinois in 1893, with fines of $100 USD, which was equivalent to on

average six months of a miner’s wage. (Fishback, Holmes, & Allen, 2009).
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lesser extent, Chicago.11 Railway firms acted as an intermediary between coal firms and

consumers, and were also major coal consumers themselves. Historical evidence points to

intense competition on coal markets during the last two decades of the 19th century, before

the large consolidation wave in the early 1900s (Graebner, 1974). Nevertheless, there was

still a considerable transportation cost of coal, which makes that coal markets were likely

not entirely integrated. There are large differences in the coal price across Illinois: in

1886, for instance, it varied between 80 cents/short ton at the 10th percentile of the price

distribution to 2 dollars/short ton at the 90th percentile, and this price dispersion slightly

increased over time. Figure 2(c) shows that the mine-gate coal price per ton, weighted by

output shares, fell from $1.2 to $0.9 between 1884-1898, after which it increased again.

3.3 Stylized Facts

In this section, I present two sets of stylized facts to motivate the assumptions made in the

structure model. First, I show that skilled wages co-moved with seasonal labor demand

shocks, whereas unskilled wages did not. Second, I show that output increased in response

to the 1897-1898 coal strikes at striking mines.

Seasonal Wage Variation

Coal demand was very seasonal: during winters, there was more demand for energy than

during summers. As was explained earlier, storage costs meant that firms could not fully

arbitrage between winters and summers, and, hence, needed to hire more workers during

winter. Joyce (2009) mentions that miners were (partially) unemployed during the sum-

mer months. This cyclical pattern provides useful variation to compare wage responses of

skilled and unskilled workers to coal demand shocks. In Figure 3(a),I show that skilled

wages followed this coal demand cycle: they were higher during winters than during sum-

mers. However, this pattern held only for skilled wages, not for unskilled wages. Although

the seasonal demand shocks increased both skilled and unskilled labor demand, only skilled

11Chicago mainly sourced its coal from fields in Ohio, Pennsylvania, and West Virginia using lake steamers
(Graebner, 1974).
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wages increased during winter. This is also shown in Figure 3(c), that plots how average

daily wages for both skilled and unskilled workers in 1890 change with the monthly num-

ber of worker-days of each type at the mine-month level throughout 1890.12 Skilled wages

were positively correlated with monthly skilled employment, whereas the unskilled worker

wage-employment schedule is flat. Moreover, there was a lot of variation in skilled wages

across mines and months, but very little cross-sectional and intertemporal variation in un-

skilled wages.

The fact that unskilled wages were dispersed very little, and did not react to coal demand

shocks, whereas skilled wages were very dispersed and reactive to demand shocks, sug-

gests that skilled labor was supplied inelastically and unskilled labor elastically. However,

it could be that labor supply also changed seasonally, for instance due to the harvesting

season. Moreover, within-year demand shocks trace out a short-run supply curve, whereas

labor supply could be more elastic on the longer term. Hence, in the structural model, I will

rely on a different instrumental variables strategy, which relies on international coal price

shocks, to identify the labor supply elasticity.

Output and Investment Response to the 1897-1898 Coal Strikes

During 1897-1898, a large strike broke out in the Illinois coal basin, which became known

as the ‘Illinois coal war’. At 28% of coal mines, miners went on strike, and this resulted

in a wage increase at 90% of the striking coal mines. Given that the strike was successful

at increasing wages, this provides a useful shock to the relative bargaining power of the

miner’s union. Using a difference-in-differences model, I compare the evolution of log

coal output between mines at which miners went on strike, I(strike)ft = 1 to mines where

miners did not strike, before and after 1898. I define the strike indicator as mines where

miners striked for at least a week during 1898, and I include both mine fixed effects and

a linear time trend. I exclude the year 1898 from the analysis, in order to not take into

12Unlike skilled wages and employment, unskilled wages and employment are not broken down by season
in the entire dataset. However, monthly wage and employment data is available for a sample of mines
selected by the Illinois Bureau of Labor Statistics across 5 counties in 1890, which covers 16% of skilled
employment and 9% of unskilled employment.
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Figure 3: Wage-Employment Profile by Skill Type

(a) Wages (b) Wage-Employment Profile

Notes: Panel (a) shows howthe wages of skilled miners and other mine employees evolved monthly during
the year 1890. Panel (b) plots mine-month level wages for both types of workers against monthly
employment, again for both types of workers.

account the reduction in output during the strike.

qft = a0 + a1I(strike)ft + a2I(strike)ftI(t ≥ 1898) + a3I(t ≥ 1898) + a4t+ δf + eft

I also estimate the same difference-in-difference model, but with cutting machine usage

on the left-hand side instead of log output. Rather than a linear model with firm fixed

effects, I use a conditional logit model with firm fixed effects because cutting machine

usage is a binary variable. In Table 1a, I report the coefficient on the interaction term, a2.

At mines that went on strike, output increased by 27% after 1898 relatively to the mines

that did not go on strike. In contrast, machine usage is estimate to decrease relatively at the

striking mines, although this effect is measured with much error.

In Table 1b, I compare pre-trends by estimating the interaction effect between the strike

indicators and a linear time trend prior to 1898. I find that output was already growing

faster at striking mines, although this effect is not significantly positive when using the

successful strike indicator. Nevertheless, it is important to keep in mind that the miner’s

decision to go on strike could have been endogenous to underlying changes in productivity,

mechanization, and other determinants of output. This is one of the reasons why a structural
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model will be useful to examine how changes in relative bargaining power of employers

and unions affected equilibrium output.

Table 1: Strikes, Output, and Investment

(a) Diff-in-diff results log(Output) Machine usage
Est. S.E. Est. S.E.

1(Strike)*1(year≥ 1898) 0.237 0.099 -0.193 0.472

Model: Linear Logit
Firm fixed effects: Yes Yes
R-squared .941 .
Observations 7415 693
Firm fixed effects: No No

(b) Pre-trends log(Output) Machine usage
Est. S.E. Est. S.E.

1(Strike)*yr 0.018 0.018 -0.144 0.036

Model: Linear Logit
R-squared .194 .
Observations 5637 5703

Notes: Panel (a) reports the difference-in-difference estimates of how log output and cutting machine usage
changed differently after 1898 between striking and non-striking mines. Panel (b) compares the pre-trend in
output and cutting machine usage between the mines that went on strike and those that did not.

3.4 Empirical Model

Production Function

I implement an empirical model of the Illinois coal industry, based on the general model

outlined in Section 2. Let f index coal firms per town and let t index all even years be-

tween 1884 and 1902. The model is set up at the firm-town-year level: it is plausible that

employers optimize at the firm level, rather than at each mine independently. However, I

let firms optimize on a labor market-by labor market basis: firms with mines in different

labor markets do not internalize the cross-labor market effects of their decisions. This is

consistent with the model, given that it does not feature strategic interaction between firms
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on the labor market. Annual coal extraction is Qft tons, the number of days worked by

high-skilled labor is denoted Hft whereas the number of low-skilled labor-days is Lft. In

contrast to the theoretical model, capital investment is modeled as a binary variable: firms

choose whether to use cutting machines or not, with usage being denoted Kft ∈ {0, 1}. I

abstract from other technologies, such as mining locomotives, because they were widely

adopted already by the start of the panel, and because they are not observed in all years of

the sample.

I maintain the C.E.S. production function from Equation (1), with an elasticity of input

substitution σ and low-skilled labor coefficient βl. Firms differ in terms of their skill-

augmenting productivity Aft and in their Hicks-neutral productivity Ωft. In Appendix C.1,

I estimate various extensions of the production model to allow for non-constant returns to

scale, the existence of intermediate inputs, and the possibility that cutting machines change

scale returns. All these extensions lead to very similar production function estimates. Tak-

ing the logs of equation (1) and adding the time index leads to equation 9, which is the

production function I will estimate.

qft =
(σ − 1

σ

)
log
((
HftAft(Kft)

)σ−1
σ + βlLft

) σ
σ−1

+ ωft(Kft) (9)

Cutting machine usageKft is allowed to affect both productivity terms Ωft andAft. The

logarithms of both these productivity terms, aft and ωft, are assumed to evolve as AR(1)

processes, as specified in Equations (10) and (11). The productivity terms have serial cor-

relations ρa and ρω and are assumed to be affected linearly by cutting machine usage, as

parametrized by the coefficients αk and βk for labor-augmenting and Hicks-neutral produc-

tivity, respectively.13 Skill-augmenting and Hicks-neutral productivity shocks are denoted

13Although these AR(1) specifications do not allow for richer models of cost dynamics in which current
productivity is a function of the total amount of output produced in the past, they do have the benefit of
not requiring inversion of the production function, thereby allowing for rich heterogeneity in both produc-
tivity terms, markdowns, and markups. I refer to Appendix C.2 for a motivation and discussion of this
assumption.
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eaft and eωft.

aft = αkKft + ρaaft−1 + eaft (10)

ωft = βkKft + ρωωft−1 + eωft (11)

I assume mines do not face a binding capacity constraint. This is consistent with the

data: in 1898, the only year for which capacities are observed, merely 1.4% of the mines

operated at full capacity, and they were responsible for 1.1% of industry sales.14 I also

abstract from stockpiling of coal, and assume that coal must be sold immediately after

extraction: coal storage usualy led to deteriorating coal quality, moreover it was expensive

and dangerous (Stoek, Hippard, & Langtry, 1920). As Williams (1901) asserts:

“The product of a mine can be stored with economy only in the mine itself

[...] Coal must be sold, therefore, as fast as it is mined’ (Williams, 1901)

Labor Supply

Adding time subscripts to the inverse labor supply function (7) and inverting it results in

the labor supply equation (12a). The daily wage of high-skilled workers Wft is computed

as the piece rate multiplied by daily tonnage per worker. I measureW0t as the average daily

wage in year t.

I include observed firm characteristics Xh
ft next to the latent amenity term ζft. Specif-

ically, I include a linear time trend and the logarithm of the minimal distance of the firm

to Chicago and St. Louis as observed characteristics, to account for proximity to the large

population centers in the area.

Hft =
(Wft

W0t

) 1
ψ
exp(Xh

ft)
ψxζft (12a)

14The entire distribution of capacity utilization rates is shown in Figure A4.
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I estimate the labor supply equation in logs, which is given by equation (12b).

hft =
1

ψ
(wft − w0t) +ψ

xXh
ft + log(ζft) (12b)

The amenity term ζft captures firm differentiation from the miner’s perspective. In con-

trast to Delabastita and Rubens (2022), which relies on a homogeneous employers model,

I do allow for firm differentiation because there is substantial variation in skilled wages

across mines, even within the same labor markets.15

Similarly to the theoretical model, the market for low-skilled labor is perfectly compet-

itive, and low-skilled workers are paid their constant outside option wage V . The main

reason for this assumption lies in the fact that unskilled wages were the same everywhere

in Illinois, as shown in Figure 3, and did not respond to labor demand shocks.

Coal Demand

As was explained in the background section, the coal produced in Illinois mines was a

nearly homogeneous product. However, coal firms are differentiated due to their locations,

which results in price differences between coal firms. I again include the lowest distance to

either Chicago or St. Louis and a linear time trend, as these variables could also affect coal

demand at each firm.

Qft =
(Pft
P0t

)η
exp(Xq

ft)
ηxξft (13)

Taking logarithms of Equation (13) results in Equation (14), which is the demand model

I estimate.

qft = η(pft − p0t) + η
xXq

ft + ln(ξft) (14)
15In Appendix Table A5, I report the R2 of regressing log daily miner wages on subsequently year, county,

town, and firm dummies. Town and year dummies explain only 29% of the variation in skilled miner wages.
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Type of Bargaining

I follow the weakly efficient bargaining model in which workers provide labor through an

upward-sloping labor supply curve, for three reasons. First, the stylized facts in Section 3.3

showed that output increased in response to strikes. These strikes were a negative shock to

employer bargaining power, as I show in Appendix C.2. In the strongly efficient bargaining

environment of Section 2.2, output should not change in response to a shock to bargaining

power, this would be a mere transfer. In a weakly efficient bargaining environment with a

fully elastic labor supply curve and inelastic product demand curve, a decrease in employer

power should decrease output, as deadweight loss increases. In contrast, as was shown in

Section 2.3, in a weakly efficient bargaining model with inelastic labor supply, a drop in

employer power increases output, as the wage markdown falls. Second, the description of

bargaining in Bloch (1922) shows that employers bargained over wages, not employment,

which is in line with the weakly efficient bargaining model. Third, the structural model will

find evidence for an upward-sloping labor supply curve, which calls for taking monopsony

power into consideration.

Variable Input Decisions

I assume firms make decisions in two stages. First, they choose whether to use cutting

machines, or not. Second, conditional on this technology choice, they choose high-skilled

wages, low-skilled employment, and materials. I will discuss these two stages in reverse

order, as the estimation of the model will also be done in that order.

In year t, employers negotiate a high-skilled wage rate with the union according to the

bargaining protocol specified in Equation (15), which is equivalent to the weakly efficient

bargaining model described in Equation (8). This bargaining first order condition pins
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down high-skilled labor demand.

γft

(
(1− ∂Zft

∂Wft

)Hft +
∂Hft

∂Wft

(Wft − Zft)
)
(PftQft −WftHft − V Lft)

+ (1− γft)(Wft − Zft)Hft(Pft
∂Qft

∂Hft

∂Hft

∂Wft

−Hft −Wft
∂Hft

∂Wft

) = 0 (15)

Following the labor supply curve, (12b), this negotiated wage rate results in a certain

amount of high-skilled labor supplied at each coal firm. Coal firms simultaneously choose

low-skilled labor as specified in Equation (16). I assume that these variable input decisions

happen after the productivity shocks eω and ea are observed by the firm. The combination

of low-skilled and high-skilled labor and capital, of which the decisions are specified below,

results in coal output Qf according to the production function (9). The coal demand curve

(14) determines the price every firm can charge at that level of coal output.

P0t(
1 + η

η
)Q

1
η

ft(
Qft

Lft
)

1
σ (Ωft)

σ−1
σ βl = V (16)

Fixed Input Choices

In every year t, the equilibrium quantities and prices at every firm can be found by solving

the system of equations (9), (12a), (13), (15), and (16): the production function, high-

skilled labor supply, coal demand, high-skilled labor demand, and low-skilled labor de-

mand. This delivers equilibrium outcomes (Q1
ft, P

1
ft, H

1
ft, L

1
ft,W

1
ft) if the firm uses cutting

machines, and different equilibrium outcomes (Q0
ft, P

0
ft, H

0
ft, L

0
ft,W

0
ft) if the firm does not

use cutting machines. The variable profit gain of the employer from using cutting machines

is denoted ∆Πd
ft:

∆Πd
ft ≡ (P 1

ftQ
1
ft −W 1

ftH
1
ft − VftL

1
ft)− (P 0

ftQ
0
ft −W 0

ftH
0
ft − VftL

0
ft) (17)

The fixed costs of technology usage are denoted Φt, so total employer profits are equal to

Πd
ft − ΦtKft. As in Peters, Roberts, Vuong, and Fryges (2017), I parametrize fixed costs
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as an exponential distribution. I let the rate parameters (ϕ0, ϕ1), evolve over time, with ϕ0

measuring the time-invariant fixed cost of technology usage and ϕ1 its time trend.

Φ ∼ exp(ϕ0 + ϕ1t)

I assume that prior to observing the productivity shocks eω and ea, firms independently

and simultaneously choose whether they will use cutting machines or not. They make

this decision by trading off the costs of machine adoption Φt with the expected variable

profit return ∆Πd. I assume that firms do not choose their cutting machines in a dynamic

manner, but optimize their technology mix period-by-period. The main reason for this

assumption is that observed entry and exit of machine usage is frequent: whereas there are

109 observed instances of cutting machine installation, there are 62 observed instances in

which an installed cutting machine is scrapped again. This suggests the existence of an

aftermarket for capital.

Using the exponential form of fixed costs, the probability that a firm uses cutting ma-

chines pkft(ϕ) is equal to:

pkft(ϕ0, ϕ1) = 1− exp
( −∆Πd

ft

ϕ0 + ϕ1t

)
(18)

4 Identification, Estimation, and Counterfactuals

4.1 Labor Supply Estimation

Although the model is specified at the firm level, the dataset is observed at the mine level.

Given that firms are assumed to optimize at the firm-town level, I aggregate all the relevant

variables to the firm-town-year-level, as detailed in Appendix A.2.

I start with the identification of the skilled labor supply curve, Equation (12b). The

labor supply elasticity 1
ψ

cannot be recovered by simply regressing skilled labor wages on

30



employment because of the latent firm characteristics ζft. Firms with a high ζft know they

are attractive to miners, and can hence offer a lower wage to attract the same number of

miners. In order to identify the slope of the skilled labor supply curve, a shock to labor

demand that is excluded from skilled labor utility is necessary.

I rely on international coal market price shocks for identification. I obtain the average

coal price on international coal markets in Europe in every year from Degrève (1982). I use

both this coal price and its interaction term with indicator for whether a mine shipped coal

over the railroad network or not as instruments. These instruments imply three assump-

tions. First, individual Illinois coal mines were too small to have an effect on equilibrium

coal prices on international trade markets. This makes sense given that Illinois produced

only around 10% of the total U.S. output, and U.S. bituminous coal mines exported only

around 1.2% of their coal in 1898 Graebner (1974). Second, international coal price shocks

did affect the demand for Illinois coal. Given that Chicago was a main market for Illinois

coal mines, and that Chicago also sourced coal by lake steamers from both the East coast

and from other coal fields, changes in non-local coal prices affected demand for Illinois

coal mines. Third, international coal price shocks affected coal mine demand more if coal

mines were shipping their coal over the railroad network compared to coal mines who

sold their coal only locally in their own town. This third assumption makes sense given

that mines that sold only locally did not compete with coal fields outside of Illinois, given

that both these mines and their consumers were not connected to the railroad network, in

contrast to mines that did ship coal over the railroad network.

I compute the baseline wage levelw0i(f)t as the average miner wage in Illinois. I estimate

Equation (12b) with a two-stage least squares estimator using the European coal price and

an interaction term of the European coal price and a shipping dummy as instruments for

the log relative wage at each firm. I control for whether the firm is a shipping mine or a

mine that only sells locally, and include county fixed effects and a linear time trend.

For unskilled wages, I rely on the observed average daily wage for unskilled labor in the

Illinois coal industry in every year. Given that I only observe this wage from 1884-1894, I
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linearly interpolate for the time period 1896-1902 using a loglinear time trend.

The skilled labor supply elasticity is estimated to be 3.799 with a standard error of 1.696,

as reported in Table 2(a). This means that in the monopsony case, which corresponds to

full employer power γft = 0, skilled labor wages would be set 20.84% below the marginal

revenue product of labor.16

4.2 Coal Demand Estimation

I estimate the demand function in logarithms, (14), using firm-level quantity and prices. As

firms in attractive locations, with a high ξft, will set higher coal prices, this equation cannot

be identified by simply regressing coal prices on quantities. I rely on the thickness of the

coal vein as a cost shifter: whereas the vein thickness affects the marginal cost of mining,

it does not enter consumer utility conditional on the coal price, because vein thickness does

not affect coal quality (Affolter & Hatch, 2002). The thickness of the coal vein was the

result of geological variation, and hence not a choice variable of the coal firms.

I estimate Equation (14) using a two-stage least squares estimator, with the log average

vein thickness in the town as the instrument for coal output. In the observed covariates

vector Xq
ft, I include the following coal demand shifters: the logarithm of the minimal

distance to either Chicago or St. Louis, the number of railroads passing through the mine’s

town, and a linear time trend. I compute p0t as the average coal price in each year.

The coal demand elasticity is in Table 2(b). The number of observations, 3192, is lower

than when estimating labor supply because the thickness of the coal veins is not observed

in 1888 and 1890. The demand elasticity is estimated at -4.406 with a standard error of

0.198. This means that firms set coal prices at a markup of 29% above marginal costs.

Coal demand is lower in markets that are further away from Chicago or St. Louis, and

higher the more railroads pass through the mine’s town. Coal demand grows at an average

rate of 1.8% per two years throughout the sample period.

16The wage markdown is equal to MRPL−w
MRPL = 1

ψ+1 .
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Table 2: Model Estimates

(a) Labor supply Est. S.E.

Labor supply elasticity 1
ψ

3.799 1.696

1(Shipping mine) 1.522 0.324

Year -0.038 0.005

First-stage F-stat 12.7
Observations 6497

(b) Coal demand

Coal demand elasticity η -4.406 0.198

Log(min. distance to big city) -0.255 0.062

No. railroads 0.478 0.041

Year 0.018 0.006

First-stage F-stat 802.9
Observations 3192

(c) Production function

Input substitution elasticity σ 0.259 0.066

Skill-augmenting technology effect αk 0.125 0.073

Hicks-neutral technology effect βk 0.190 0.135

Low-skilled labor coefficient βl 0.001 0.072

Serial correlation Hicks-neutral productivity ρω 0.356 0.239

Serial correlation skill-augmenting productivity ρω 0.772 0.272
Observations 1786

(d) Fixed machine costs

Fixed cost in 1882 (’000 USD) ϕ 0 21.694 5.051

Fixed cost time trend (’000 USD) ϕ 1 -2.107 0.578

Notes: Panel (a) reports the skilled labor supply estimates, panel (b) reports the estimates of the coal
demand function, panel (c) contains the estimates of the production function, with block-bootstrapped
standard errors over 200 iterations. Panel (d) reports the average and median of the bargaining power
distribution. Panel (e) reports the cutting machine fixed cost estimates.
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4.3 Production Function Estimation

I estimate the production function in two steps. In a first step, I estimate the elasticity of

input substitution σ and the skill-augmenting effects of cutting machines, αk. Second, I

estimate all other production function coefficients, βl and βk.

Elasticity of Substitution

The elasticity of substitution is usually estimated by taking the ratio of the input de-

mand functions from the employer’s profit maximization first order conditions, e.g. in

Doraszelski and Jaumandreu (2018). In the bargaining model, however, the marginal rev-

enue product of high-skilled labor is not equal to its wage as long as γ < 1. Setting γ to

zero in equation (8), which implies perfect monopsony power, gives:

∂Rft

∂Hft

= wft(1 + ψ)

Conversely, if γ becomes one, which implies that the labor union has all the bargaining

power, the wage of high-skilled workers is equated to their marginal revenue product:

∂Rft

∂Hft

= wft

These two first order conditions for extremes of the bargaining parameter γf can be

linearly interpolated using the bargaining parameter γft, which results in the linear approx-

imation (19).

∂Rft

∂Hft

= wft(1 + (1− γft)ψ) (19)

Working out the first order conditions (6) and (19), and dividing (6) by (19), results in

Equation (20). This equation is a variant of the first stage regression from Doraszelski and

Jaumandreu (2018), with the difference that the labor supply elasticity enters into the first
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order conditions, as in Rubens, Wu, and Xu (2024).

lft − hft = σ(wft − v + ln(1 + (1− γft)ψ)) + σ ln(βl) + (1− σ)aft︸ ︷︷ ︸
≡ãft

(20)

Given that Equation (10) specifies an AR(1) process for the factor-augmenting productiv-

ity term aft, the residual ãft also evolves as an AR(1). Hence, taking ρa differences of (20)

isolates the productivity shock eaft as a function of the coefficients ρa, σ, and αk. Using the

previously stated assumptions that capital is chosen prior to observing the skill-augmenting

productivity shock eaft, but variable inputs are chosen afterwards, the moment conditions

(21) can be specified to estimate the elasticity of input substitution σ, the skill-augmenting

productivity effect of cutting machines αk, and the serial correlation in skill-augmenting

productivity ρa:

E
[
eaft(ρ

a, αk, σ)|


Kft−r

Lft−r−1

Hft−r−1

]T−1

r=0
= 0 (21)

Second-Stage Production Function Coefficients

From equation (20), the log factor-augmenting productivity residual aft can be written as

a function of the estimated parameters σ and ψ, and the yet to estimate parameters βl and

βk:

aft = (
lft − hft
1− σ

)− σ

1− σ
(ln(βl)

)
− σ

1− σ
(wft − vft + ln(1 + (1− γft)ψ)

Substituting this factor-augmenting productivity term into the log production function
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gives:

qft =
σ

σ − 1
ln

((
exp

(
(
lft − hft
1− σ

)− σ

1− σ
(ln(βl)

)
− σ

1− σ
(wft − vft + ln(1 + (1− γft)ψ))

)
Hft

)σ−1
σ

+βlL
σ
σ−1

ft

)
+ ωft

We define the first linear term in the log production function as Bft(.):

Bft ≡
σ

σ − 1
ln

((
exp

(
(
lft − hft
1− σ

)− σ

1− σ
(ln(βl)

)
− σ

1− σ
(wft − vft + ln(1 + (1− γft)ψ))

)
Hft

)σ−1
σ

+βlL
σ
σ−1

ft

)

Using the productivity transition in Equation (11), taking ρω differences isolates the

Hicks-neutral productivity shock eωft as a function of the parameters (ρω, βk, βl):

eωft = qft − ρωqft−1 − βk(kft − ρωkft−1)− (Bft − ρωBft−1)

Making use of the timing assumptions that employers choose capital prior to the realiza-

tion of the Hicks-neutral productivity shock, but choose low-skilled labor and bargain over

wages after the realization of this shock leads to the moment conditions in equation (22). I

estimate this model using lags of up to one time period.

E
[
eωft(ρ

ω, βk, βl)|


Kft−r

Lft−r−1

Hft−r−1

]T−1

r=0
= 0 (22)
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Production Function Estimates

The production function estimates are reported in Table 2(c). The elasticity of substitution

between skilled and unskilled miners is estimated at 0.259, hence, these two types of work-

ers are gross complements. It is not surprising that this elasticity is relatively low, given

that skilled miners were used for cutting coal whereas unskilled miners were used mainly

for hauling coal, two tasks that complements rather than substitutes. Cutting machines are

estimated to increase skill-augmenting productivity by 13.3%, so cutting machines are a

skill-augmenting technology. Given that skilled and unskilled labor are gross complements,

this makes cutting machines an unskill-biased technology (Acemoglu, 2002), similarly to

many other technologies that were developed throughout the 19th century, which were

also unskill-biased (Mokyr, 1990; C. D. Goldin & Katz, 2009). The finding that cutting

machines were unskill-biased is consistent with the fact that cutting machines automated

the cutting process, which was reliant on skilled miners, in contrast to the hauling pro-

cess, which was mainly reliant on unskilled workers. Besides increasing skill-augmenting

productivity, cutting machines also increased Hicks-neutral productivity by 21%, although

this effect is not statistically significant. The low-skilled labor parameter βl is estimated at

0.001, but is estimated imprecisely. Easier to interpret are the corresponding output elas-

ticities of low- and high-skilled labor, which are estimated at 0.56 and 0.44, respectively.

Finally, both skill-augmenting and Hicks-neutral productivity are serially correlated, with

serial correlations of 0.356 and 0.772.

4.4 Bargaining Weights

Adding time subscripts to the wage bargaining first order condition, Equation (15), and

rearranging terms in function of the union bargaining weights γft, leads to Equation (23).

I estimate the bargaining parameters using this equation, of which all variables are either

observed or have been estimated in the production, labor supply, and goods demand models.
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Figure 4: Bargaining Parameter Estimates

(a) Employer Power: Distribution (b) Employer Power: Evolution

γft =
(Wft − Zft)(

∂Rft
∂Hft

∂Hft
∂Wft

−Hft −Wft
∂Hft
∂Wft

)

(Wft − Zft)(
∂Rft
∂Hft

∂Hft
∂Wft

−Hft −Wft
∂Hft
∂Wft

)− (
ψHft
1+ψ

+
∂Hft
∂Wft

(Wft − Zft))(
Πdft
Hft

)

(23)

The employer’s bargaining weight was on average 0.380, and 0.384 at the median firm.

I keep only the bargaining parameter values that range in between zero and one, as values

outside of this range are meaningless in the context of the bargaining model. This reduces

the number of observations by 13%. Figure 4a shows the entire distribution of employer

power, Figure 4b shows the evolution of employer power on average and at the median

firm. After an initial decrease in the first years of the sample, employer power increased by

more than one third between 1890 and 1902. This coincided with an aggregate decline in

both nominal and real wages in the United States during the 1890s (Douglas & Lamberson,

1921).

Table 3 regresses the logarithm of the employer bargaining parameter over high-skilled

workers (ln(1 − γf )) on firm and market characteristics. The first two columns do not

include firm fixed effects, the last two do. In both specifications, employers with higher

market shares on the high-skilled worker market had more bargaining power. Moreover,
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employer power was increasing at a rate of 0.6%-1.0% per year. Employers in markets with

more immigrants and a higher population share of African Americans have more bargain-

ing power. This is consistent with the worse bargaining power faced by both immigrants

and African Americans, and with the use of ‘strike-breakers’ from the Southern United

States to the decrease the bargaining ability of the labor unions. Finally, firms in counties

with higher manufacturing wages have less bargaining power, as this provides a more fa-

vorable negotiation position for miners. Although the 1897-1898 strikes did not succeed

in countering the overall rise in employer power, employer power did fall relatively at the

striking mines compared to the mines that did not go on strike.17

Table 3: Employer Power: Covariates

log(Employer bargaining power)
Est. S.E. Est. S.E.

High-skilled employment market share 0.290 0.022 0.183 0.038

Low-skilled employment market share -0.313 0.022 -0.219 0.046

Year 0.010 0.002 0.006 0.003

Pop. share foreigners 0.775 0.290

Pop. share Afro-Americans 2.466 0.686

Log(manufacturing wage) -0.172 0.068

Firm FE: No Yes
R-squared .066 .677
Observations 3568 3568

Notes: In this table, I regress ln(1− γf ) on firm and market characteristics.

17I document this in Appendix C.2.
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4.5 Cutting Machine Fixed Costs

Solving for Market Equilibrium Conditional on Machine Usage

Using the estimated model, I solve the system of equations (9), (12a), (13), (15), and (16)

for every firm in every year, both if using cutting machines and if not using cutting ma-

chines. Given that this system of equations is nonlinear, and cannot be solved analytically,

I solve for equilibrium numerically.18 For every outcome variable Y ∈ {Q,P,H, L,W},

this yields an equilibrium outcomes if the firms use cutting machines, Y 1
ft, and if they do

not, Y 0
ft.

Estimation of Fixed Costs

Using the estimated equilibrium outcome variables, the cutting machine probabilities at

each firm in each year, pkft(ϕ), can be computed using Equation (18), up to the unknown

fixed cost parameters (ϕ0, ϕ1). I estimate these fixed cost parameters using a maximum

likelihood estimator. Using Equation (18), the log likelihood function of using cutting

machines ln(Lft(ϕ) can be written as:

ln(Lft(ϕ) =
∑
f,t

[Kft ln(p
k(ϕ) + (1−Kft) ln(1− pkft(ϕ))]

I estimate the fixed cost parameters (ϕ0, ϕ1) by maximizing the log likelihood function

ln(Lft(ϕ). Because the number of observed capital adoptions in the reduced-size panel on

which the equilibrium model is estimated becomes sparse, I do not rely on the observed

capital usages Kft in the raw data, but rather estimate a conditional choice probability K̃ft

first by running a probit model of cutting machine usage on log Hicks-neutral and labor-

augmenting productivity, the labor supply shifter, and the coal demand shifter. I estimate

this model on the entire sample and obtain predicted usage rates of cutting machines for

every firm in every year. Next, I use these predicted usage rates in the log likelihood func-

18I use the Matlab optimizer fsolve with function tolerance 10−3, 105 maximum iterations, and 600 maxi-
mum function evaluations.
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tion to estimate cutting machine fixed costs. The resulting estimates are in Table 2(d). The

fixed cost of using a cutting machine is estimated to be $21,694 in 1882, and is estimated to

fall by $2,107 every two years throughout the sample period. This decline in machine fixed

cost is in line with the falling costs of many new technologies. External cost information

for cutting machines in 1889 is obtained from Brown (1889), which reports a purchasing

cost of $8,000 for eight cutting machines. The average firm in the data set also used 8

cutting machines, so the estimated fixed cost in 1888 of $4,838 is lower than the external

cost estimate, although in the same order of magnitude.

Solving for Market Equilibrium and Equilibrium Machine Usage

Using Equation (18), I estimate equilibrium cutting machine usage for every firm in every

year. I compute the equilibrium values Ŷft for variables Y ∈ {Q,P,H, L,W} as the

weighted average of the value when the firm uses machine usage and when if does not,

weighted by the probability of using cutting machines:

Ŷft = Y 0
ftPr(Kft = 0) + Y 1

ftPr(Kft = 1) (24)

Appendix B.2 discusses how the predicted equilibrium values Ŷft compare to the ob-

served variables Yft. The model closely tracks the observed evolution of all equilibrium

variables, despite the fact that the estimation procedure does not explicitly target any of

these moments, except for machine usage rates.

4.6 Counterfactual: Welfare Effects of Labor Market Power

In order to examine the effects of employer power, I compute how all equilibrium outcomes

and welfare would have changed if bargaining power of employers would increase by one

standard deviation, which is denoted as a counterfactual bargaining parameter γ̃ft.
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Welfare

In both the actual and counterfactual equilibria, I compute consumer surplus CSft as the

area in between the demand curve and the equilibrium price:

CSft ≡
∫ Q̂ft

0

(P0

(Qft

ξft

) 1
η − P̂ft)dQft =

( −1

η + 1

)P0

ξ
1
η

(Q̂ft)
η+1
η

Similarly, I compute worker surplus WSft as the area between the labor supply curve

and the equilibrium wage Ŵft:

WSft ≡
∫ Ĥft

0

(Ŵft −W0,i(f)t

(Hft

ζft

)ψ
)dHft =

( ψ

ψ + 1

)W0

ζψft
(Ĥft)

ψ+1

Finally, producer surplus is equal to variable employer profits:

PSft ≡ P̂ftQ̂ft − ĤftŴft − L̂ftVft

Counterfactual Results

Table 4a reports the equilibrium effects of a one standard deviation increase in employer

power. If capital investment would be exogenous, coal output would decrease by 22.7%,

because the exertion of monopsony power induces deadweight loss. However, capital in-

vestment does not remain fixed: the increase in employer power results in an increase in

the cutting machine usage of 21%.19 As a result, the output decline due to monopsony

power is lower, at 20.8%, when taking into account endogenous cutting machine usage,

given that increased investment lowers marginal costs. The net effect on equilibrium out-

put is still negative because the deadweight loss effect dominates the reduction in marginal

costs due to higher technology adoption. Similarly, the exogenous investment model over-

estimates the decline in employment and wages, and the increase of the coal price. Both

19The usage rate of 9.0% in the observed equilibrium is lower as the usage rate of 11% in Figure A2e because
the comparison table conditions on the equilibrium being solved in both the actual and counterfactual
equilibrium. This leads to a different sample selection with slightly lower capital usage rates.

42



Hicks-neutral and skill-augmenting productivity increase on average when employer power

increases, due to higher capital investment.

The welfare counterfactuals are reported in Table 4b. Consumer surplus is estimated to

fall by 18.0% on average in the exogenous investment model, which reduces to a 16.4%

drop in the endogenous investment model. Similarly, the reduction in labor surplus changes

from 33.3% to 31.9% once endogenous capital usage is taken into account.

Under increased employer power, consumers and workers experience a drop in surplus,

although consumer surplus could in theory have increased if the technology adoption mech-

anism would dominate the deadweight loss effect. In contrast, producer surplus obviously

increases when employers gain bargaining power. Assuming exogenous investment, pro-

ducer surplus would increase by 16.9%, which increases to 20.0% with endogenous invest-

ment. The increased producer surplus is insufficient to compensate the losses to consumer

and labor surplus, as total surplus falls by 7.2%. However, assuming exogenous investment

would predict a total surplus drop of 9.26%, which is an overestimate of the true welfare

loss by 29%.

Factor Intensity and Monopsony Power

The equilibrium employment changes in Table 4a reveal that increased employer power

leads to a reduction of the high- to low-skilled labor ratio from 2.25 to 2.18. This reduction

in relative high-skilled labor usage is due to a combination of two effects. First, the increase

in employer power affects employer bargaining power only over high-skilled workers, not

over low-skilled workers which are supplied on a perfectly competitive market. Hence,

increased monopsony power over high-skilled workers increases the marginal cost for these

workers, and induces employers to substitute low-skilled workers for high-skilled workers.

This is the mechanism documented in Goolsbee and Syverson (2019).

However, a second mechanism is at play. The increase in employer power results in

higher cutting machine adoption, which is an unskill-biased technology. This leads to an

additional substitution of low-skilled for high-skilled workers. Comparing the exogenous

to the endogenous investment counterfactual shows that 85% of the reduction in the high-

43



Table 4: Counterfactual: Increased Employer Power

(a) Equilibrium Exogenous K Endogenous K
Actual C.F. %dif C.F. %dif

Output 1750.247 1352.794 -22.708 1386.455 -20.785

Price 1.975 2.090 5.821 2.083 5.460

High-skilled labor 676.347 519.839 -23.140 527.477 -22.011

Low-skilled labor 300.149 237.309 -20.936 241.995 -19.375

High-skilled wage 1.834 1.743 -4.918 1.749 -4.638

Cutting machine usage 0.090 0.090 0.000 0.110 21.254

Hicks-neutral productivity 1.359 1.359 0.000 1.361 0.201

Skill-augmenting productivity 5.014 5.014 0.000 5.024 0.214

(b) Welfare Exogenous K Endogenous K
Actual C.F. %dif C.F. %dif

Consumer surplus 698.894 573.044 -18.007 584.433 -16.378

Producer surplus 440.238 514.548 16.880 528.232 19.988

Worker surplus 224.168 149.471 -33.322 152.729 -31.869

Total surplus 1363.301 1237.063 -9.260 1265.394 -7.182

Notes: Panel (a) reports averages for all equilibrium outcomes in 1902 in the observed equilibrium (the left
column) and in the counterfactual equilibrium where employer power does not increase (the center and right
columns). The center column keeps cutting machine usage exogenous, whereas the right column allows
cutting machine usage to be endogenous to the degree of bargaining power held by employers.

to-low skilled labor ratio was due to the monopsony-induced substitution effect, whereas

the remaining 15% was due to increased cutting machine adoption. If cutting machines

would have been a skill-biased technology, rather than an unskill-biased technology, the

monopsony-induced substitution and the machine adoption effect would have been coun-

teracting rather than reinforcing.
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5 Conclusion

In this paper, I investigate the welfare effects of employer power by studying the trade-

off between monopsony distortions and endogenous investment. Using a model of weakly

efficient bargaining and linear wage contracts, I find that an increase in employer power

could either increase or decrease output and total welfare, depending on the relative size

of the monopsony distortion and of the productivity effects of new technologies, and on

the initial level of employer power. In the empirical context of the mechanization of the

late 19th century Illinois coal mining industry, I find that an increase in employer power

lowers equilibrium output because the monopsony distortion dominates the marginal cost

reduction that is due to additional coal cutting machine adoption. Although total welfare

declines when employer power increases, this decline is 29% smaller than one would find

when holding capital investment fixed. Hence, the model and the results show that taking

into account endogenous capital quantitatively matters for assessing the welfare effects of

labor market power.
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Appendices

A Appendix: Data

A.1 Sources

Mine Inspector Reports

The main data source is the biennial report of the Bureau of Labor Statistics of Illinois, of

which I collected the volumes between 1884 and 1902. Each report contains a list of all

mines in each county, and reports the name of the mine owner, the town in which the mine

is located, and a selection of variables that varies across the volumes. An overview of all

the variables (including unused ones), and the years in which they are observed, is in Tables

A6 and A7. Output quantities, the number of miners and other employees, mine-gate coal

prices, and information on the usage of cutting machines are reported in every volume.

Miner wages and the number of days worked are reported in every volume except 1896.

The other variables, which includes information about the mine type, hauling technology,

other technical characteristics, and other inputs, are reported in a subset of years.

Census of Population, Agriculture, and Manufacturing

I use the 1880 population census to have information on county population sizes, demo-

graphic compositions, and areas. I also observe the county-level capital stock and employ-

ment in manufacturing industries from the 1880 census of manufacturing, and the number

of farms and improved farmland area from the 1880 census of agriculture.

Monthly Data

The 1888 report contains monthly production data for a selection of 11 mines in Illinois,

across 6 counties. I observe the monthly number of days worked and the number of skilled

and unskilled workers. I also observe the net earnings for all skilled and unskilled workers

per mine per month, and the number of tons mined per worker per month. This allows me
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to compute the daily earnings of skilled and unskilled workers per month.

A.2 Data Cleaning

Employment

In every year except 1896, workers are divided into two categories, ‘miners’ and ‘other

employees’. In 1896, a different d istinction is made, between ‘underground workers’

and ‘above-ground workers’. This does not correspond to the miner-others categorization

because all miners were underground workers, but some underground workers were not

miners (e.g. doorboys, mule drivers, etc.). Hence, I do not use the 1896 data. From 1888

to 1896, boys are reported as a separate working category. Given that miners (cutters) were

adults, I include these boys in the ‘other employee’ category. The number of days worked

is observed for all years. The average number of other employees per mine throughout

the year is observed in every year except 1896; in 1898 it is subdivided into underground

other workers and above-ground other workers, which I add up into a single category. The

quantity of skilled and unskilled labor is calculated by multiplying the number of days

worked with the average number of workers in each category throughout the year. Up to

and including 1890, the average number of miners is reported separately for winters and

summers. I calculate the average number of workers during the year by taking the simple

average of summers and winters. If mines closed down during winters or, more likely,

summers, I calculate the annual amount of labor-days by multiplying the average number

of workers during the observed season with the total number of days worked during the

year.

Wages

Only miner wages are consistently reported over time at the mine level. The piece rate

for miners is reported. Up to 1894, miner wages per ton of coal are reported separately

for summers and winters. I weight these seasonal piece rates wages using the number of

workers employed in each season for the years 1884-1890. In 1892 and 1894, seasonal
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employment is not reported, so I take simple averages of the seasonal wage rates. In 1896,

wages are unobserved. From 1898 onwards, wages are no longer reported seasonally, be-

cause wages were negotiated biennially from that year onwards. For these years, wages are

reported separately for hand and machine miners. In the mines that employed both hand

and machine miners, I take the average of these two piece rates, weighted by the amount of

coal cut by hand and cutting machines.

Output Quantity and Price

The total amount of coal mined is reported in every year, in short tons (2000 lbs). Up to

and including 1890, the total quantity of coal extraction is reported, without distinguishing

different sizes of coal pieces. After 1890, coal output is reported separately between ‘lump’

coal (large pieces) and smaller pieces, which I sum in order to ensure consistency in the

output definition. Mine-gate prices are normally given on average for all coal sizes, except

in 1894 and 1896, where they are only given for ‘lump’ coal (the larger chunks of coal).

I take the lump price to be the average coal price for all coal sizes in these two years.

There does not seem to be any discontinuity in the time series of average or median prices

between 1892-1894 or 1896-1898 after doing this, which I see as motivating evidence for

this assumption.

Cutting Machine Usage

Between 1884 and 1890, the number of cutting machines used in each mine is observed. In

between 1892 and 1896, a dummy is observed for whether coal was mined by hand, using

cutting machines, or both. I categorize mines using both hand mining and cutting machines

as mines using cutting machines. In 1898, I infer cutting machine usage by looking at which

mines paid ’machine wages’ and ’hand wages’ (or both). In 1888, the number of cutting

machines is reported by type of cutting machine as well. Finally, in 1900 and 1902, the

output cut by machines and by hand is reported separately for each mine, on the basis of

which I again know which mines used cutting machines, and which did not.
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Deflators

I deflate all monetary variables using the consumer price index from the Handbook of Labor

Statistics of the U.S. Department of Labor, as reported by the Minneapolis Federal Reserve

Bank website.20

Hours Worked

In 1898, eight-hour days were enforced by law, which means that the ‘number of days’

measure changes in unit between 1898 and 1900. As the inspector report from 1886 shows

that ten-hour days were the standard, I multiply the number of working days after 1898 by

80% in order to ensure consistency in the meaning of a ‘workday’, i.e. to ensure that in

terms of the total number of hours worked, the labor quantity definition does not change

after 1898. Given that the model is estimated on the pre-1898 period, this does not affect

the model estimates, only the descriptive evidence.

Mine and Firm Identifiers

The raw dataset reports mine names, which are not necessarily consistent over time. Based

on the mine names, it is often possible to infer the firm name as well, in the case of multi-

mine firms. For instance, the Illinois Valley Coal Company No. 1 and Illinois Valley Coal

Company No. 2 mines clearly belong to the same company. For single-mine firms, the

operator is usually mentioned as the mine name, (e.g. ‘Floyd Bussard’). For the multi-

mine firms, mine names were made consistent over time as much as possible.

Town Identifiers and Labor Market Definitions

The data set contains town names. I link these names to geographical coordinates using

Google Maps. I calculate the shortest distance between every town in the data. For towns

that are located less than 3 miles from each other, I merge them and assign them randomly

the coordinates of either of the two mines. This reduces the number of towns in the dataset

from 448 to 374. The resulting labor markets lie at least 3 miles from the nearest labor

20https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index-
1800-
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market.

Coal Market Definitions

Using the 1883 Inspector Report, I link every coal mining town to a railroad line, if any.

Some towns are located at the intersection of multiple lines, in which case I assign the

town to the first line mentioned. I make a dummy variable that indicates whether a railroad

is located on a crossroad of multiple railroad lines. Towns not located on railroads are

assumed to be isolated coal markets. For the connected towns, the market is defined as the

railroad line on which they are located, of which there are 26. Given that data from 1883 is

used, expansion of the railroad network after 1883 is not taken into account. However, the

Illinois railroad network was already very dense by 1883.

Aggregation from Mine to Firm Level

I aggregate labor from the mine-bi-year- to firm-bi-year level by taking sums of the number

of labor-days and labor expenses for both types of workers, both per year and per season. I

calculate the wage rates for both types per worker by dividing firm-level labor expenditure

on the firm-level number of labor-days. I also sum powder usage, coal output and revenue

to the firm-level and calculate the firm-level coal price by dividing total firm revenue by

total firm output. I aggregate mine depth and vein thickness by taking averages across the

different mines of the same firm. I define the cutting machine dummy at the firm-level as

the presence of at least one cutting machine in one of the mines owned by the firm. I define

‘firm’ as the combination of the firm name in the dataset and its town (the merged towns

that are used to define labor markets), as firms are assumed to optimize input usage on a

town-by-town basis.
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B Appendix: Theory and Model Fit

B.1 Simulating the Theoretical Model

Baseline Parametrization

In Section 2.3, I simulate the theoretical model with the following parameters values. I use

the estimates from Kroft et al. (2020) for the U.S. construction industry to set the product

demand elasticity to η = −7 and the labor supply elasticity to ψ = 0.25. I calibrate the

elasticity of substitution between high- and low-skilled labor at σ = 0.7. I normalize most

parameters at one: ξ = 1, ζ = 1, w0 = p0 = v = 1, ω = 1, a = 1. I set the low-skilled

production coefficient at 0.2: βl = 0.1. I simulate a dataset with 50 observations, in which

the bargaining parameter γf is distributed uniformly between 0 and 1. I let fixed technology

costs be distributed as an exponential distribution with its mean being equal to the average

variable profit gain of technology adoption.

Under these parametrizations, I solve the system of equations (1), (2), (7), (6), (8) for

equilibrium (Q,P,W,H,L).

Alternative Parametrizations

In Figure A1, I compare the baseline calibration of the structural model to various alter-

native parametrizations. First, I let labor supply be more inelastic. Second, I increase the

productivity effects of the new technology.

B.2 Model Fit

Figure A2 compares the model-predicted equilibrium outcomes against the observed out-

comes in the data. The model is not estimated to target any of these outcomes, except for

capital invetment, through the maximum likelihood estimation of fixed technology costs.

Nevertheless, the model generates a very similar evolution of average wages, prices, em-

ployment, output, and investment between the predicted and observed outcomes. Although
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the model performs well in terms of generating the observed evolution of these variables

over time, it performs slightly less well in terms of absolule magnitudes. The model-

predicted output and employment levels are underestimated compared to the truth, and

coal prices are overestimated.
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C Appendix: Extensions and Robustness Checks

C.1 Alternative Production Function Specifications

Non-Constant Returns to Scale

In the main text, the production function (1) relied on constant returns to scale. In contrast,

Equation (27) allows for non-constant returns to scale, as parametrized by ν.

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f

) νσ
σ−1

Ωf (Kf ) (25)

The first step of the production function estimation procedure, the estimation of Equation

(20) remains the same. However, the second step of the estimation procedure needs to

estimate the scale parameter ν in addition to the other production function coefficients ρω,

βl, and βk. Given that we have four instruments (lagged employment for both labor types,

current and lagged capital), the model is still identified.

qft =
νσ

σ − 1
ln

((
exp

(
(
lft − hft
1− σ

)− σ

1− σ
(ln(βl)

)
− σ

1− σ
(wft − vft + ln(1 + ψ))

)
Hft

)σ−1
σ

+βlL
σ
σ−1

ft

)
+ ωft

The results are in the first column of Table A4. The scale parameter is estimated at

1.038, which indicates modestly increasing returns to scale, but is not significantly different

from 1. Hence, the assumption of constant returns to scale cannot be rejected. The other

production coefficients look very similar to the estimates in the main model that assumes

constant returns to scale.

Adding Materials

As a second robustness check, I add the materials to the production function as a third pro-

duction input. I use the number of kegs of black powder to measure materials, as this is the
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main intermediate input that is measured in the dataset. This implies that a fifth coefficient,

βm needs to be estimated. I assume that changing the stock of black powder requires ad-

justment costs: black powder is a durable good but needs to be safely stored. Hence, it is

conceivable that there was an adjustment cost when increasing the stock of black powder,

as additional storage space needed to be added. Conform with this assumption, I include

current and lagged materials as an additional instrument when estimating the production

function.

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f + βmM
σ−1
σ

f

) νσ
σ−1

Ωf (Kf ) (26)

The estimates are in the second column of Table A4. The material coefficient is esti-

mated to be very close to zero, which means that ignoring materials in the main production

model does not matter much. The remaining production coefficient look very similar to

the previous ones, with the exception of the serieal correlation in TFP, which increases to

0.551.

Capital and Returns to Scale

It could be that the degree of returns to scale changed when firms adopted cutting machines.

To test this, I interact the returns to scale parameter with the cutting machine indicator

variable, thereby allowing returns to scale to differ between firms that do and do not use

cutting machines. Now, an additional instrument is needed to identify all six parameters

in the production function. I rely on non-fatal accident rates as shifters of labor supply,

which should affect input usage but not productivity directly. I measure the probability of

non-fatal accidents as the ratio of the number of such accidents over total employment at

the mine, in days worked.

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f + βmM
σ−1
σ

f

) (ν0+ν1Kf )σ

σ−1
Ωf (Kf ) (27)
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The estimates are in the third column of Table A4. The interaction effect between returns

to scale and cutting machines is close to zero and not statistically significant. Hence, the

null hypothesis that returns to scale are invariant to cutting machine usage cannot be re-

jected. The remaining parameters again stay similar, except for the capital coefficient that

is now estimated at 0.433, albeit very imprecisely.

C.2 Additional Results

Strikes and Employer Power

In this appendix, I repeat the difference-in-differences analysis from Section 3.3, but now

use the log of the estimated bargaining parameter γft as the left-hand side variable, in order

to examine how employer power changed in response to the 1897 strike. In the left column

of Table A3, I compare all firms with strikes to the non-striking firms. Union power is

estimated to increase by 3%, although this effect is not statistically significant. When only

considering the striking firms at which wages increased after the strike, the increase in

union bargaining power is higher, at 8.5%, and this change is statistically significant.

Cost Dynamics

In Table A2, I test for cost dynamics by regressing labor productivity, measured as output

per labor day, on log cumulative output. This is in the same spirit of Benkard (2000). I

find that when not taking mine fixed effects, cumulative past output correlates with higher

productivity. However, this is likely due to a selection effect: more productive mines exist

longer and produce more. As soon as I include mine fixed effects and look at time series

variation in productivity within mines, the relationship between log cumulative output and

labor productivity vanishes. This suggests that cost dynamics are not a key feature to be

included in the model.
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C.3 Appendix Tables and Figures

Figure A1: Simulations: Alternative Parametrization

(a) Baseline: ψ = 1.5, βk = 0.2

(b) More Inelastic Labor Supply: ψ = 0.5, βk = 0.2

(c) Smaller Productivity Effect: ψ = 1.5, βk = 0.1
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Figure A2: Model Fit

(a) High-Skilled Wage (b) Coal Price

(c) High-Skilled Labor (d) Low-Skilled Labor

(e) Technology Usage (f) Output

Notes: Figures compare the average equilibrium variables between their observed values and the predicted
values from the model, for each year.
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Figure A3: Geographical Spread of Cutting Machines

Notes: The dots indicate mining towns, each of which can contain multiple mines. Villages with squares
contain at least one machine mine.
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Figure A4: Capacity Utilization

Notes: This graph plots the distribution of capacity utilization, defined as annual mine output over annual
mine capacity, across mines in 1898. A distinction is made between hand mines, which did not use cutting
machines, and machine mines, which did so.
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Figure A5: Patent of the Harrison Cutting Machine

Notes: U.S. patent of the 1882 Improved Harrison Coal Cutting Machine (Whitcomb, 1882). This was the
most frequently used coal cutting machine in the data set.

65



Table A1: Occupations and Wages

Daily wage (USD) Employment share (%)

Miner 2.267 61.5
Laborers 1.76 14.30
Drivers 1.83 5.91
Loaders 1.74 3.63
Trappers 0.80 1.86
Timbermen 2.02 1.68
Roadmen 2.36 1.46
Helpers 1.70 0.92
Brusher 2.06 0.75
Cagers 1.87 0.70
Engineer 2.11 0.61
Firemen 1.60 0.57
Entrymen 2.01 0.56
Pit boss 2.70 0.56
Carpenter 2.09 0.53
Blacksmith 2.08 0.46
Trimmers 1.50 0.36
Dumper 1.68 0.36
Mule tender 1.65 0.31
Weighmen 1.95 0.29

Notes: Occupation-level data for the top-20 occupations by employment share in the 1890 sample of 11
mines in Illinois. The 20 occupations with highest employment shares together cover 97% of coal mining
workers in the sample.
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Table A2: Cost Dynamics

log(Output/(labor-days))
Est. S.E. Est. S.E.

log(Cum. output) 0.124 0.004 -0.009 0.017

Mine FE No Yes
Observations 3717 3717
R-squared .327 .811

Notes: Regression of log output per worker-day against log cumulative output (lagged by one time period)
at the mine-year level. Sample only includes mines for which lagged output is observed.
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Table A3: Union Power and Strikes

log(Union bargaining power)
Est. S.E. Est. S.E.

1(Strike)*1(year≥ 1898) 0.117 0.072 0.175 0.063

Strike indicator: Any Successful
R-squared .703 .664
Observations 3469 3918

Notes: This table re-estimates the difference-in-differences model for the 1897-1898 strikes, but using the
log of the labor union’s bargaining power, ln(γft), as the left-hand side variable instead of log output. The
left column compares all mines that went on strike, the right column only the mines at which strikes resulted
in wage increases.
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Table A4: Production Function: Extensions

Non-constant RTS Adding materials Capital and RTS
Est. S.E. Est. S.E. Est. S.E.

Returns to scale 1.038 0.030 1.051 0.094 0.974 0.141

Labor coefficient 0.001 0.002 0.002 0.009 0.000 4.242

Capital coefficient 0.130 0.132 0.114 0.552 0.885 0.988

Serial corr. TFP 0.390 0.106 0.562 0.224 0.400 0.306

Materials coefficient . 0.000 0.046 0.000 0.413

Returns to scale * K . . -0.000 0.050

Observations 732 332 332

Notes: This table reports the estimates for the various extensions of the production function. Standard errors
are block-bootstrapped with 200 iterations.
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Table A5: Wage Variation

R2 R2 R2 R2

Log(Daily skilled miner wage) 0.099 0.185 0.290 0.736

Year F.E. X X X X
County F.E. X X X
Town F.E. X X
Firm F.E. X

Notes: The four columns report the R2 of regressing log wages on, alternatively, year, county, town, and
firm fixed effects.
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Table A6: All Variables per Year

Year 1884 ’86 ’88 ’90 ’92 ’94 ’96 ’98 ’00 ’02

Output Quantities
Total X X X X X X X X X X
Lump X X X X X X
Mine run X X
Egg X X
Pea X X
Slack X X
Shipping or local mine X X X
Shipping quantities X

Input Quantities
Miners, winter X X X X
Miners, summer X X X X
Miners, avg entire year X X X X X
Miners, max entire year X X
Other employees X X X X X X X X X
Other employees, underground X
Other employees, above ground X
Other employees winter X
Other employees summer X
Boys employed underground X X X X X
Mules X
Days worked X X X X X X X X X
Kegs powder X X X X X X X X
Men killed X X X X X X X X
Men injured X X X X X X X X
Capital (in dollar) X

71



Table A7: All Variables per Year (cont.)

Year 1884 ’86 ’88 ’90 ’92 ’94 ’96 ’98 ’00 ’02

Output Price
Price/ton at mine X X X X X X X X
Price/ton at mine, lump X X X

Input prices
Miner piece rate (summer) X X X X X X
Miner piece rate (winter) X X X X X X
Miner piece rate (hand) X X X
Miner piece rate (machines) X X
Piece rate dummy X
Payment frequency X X X X
Net/gross wage X
Oil price X

Technical information
Type (drift, shaft, slope) X X X X X X
Hauling technology X X X X X
Depth X X X X X X X
Thickness X X X X X X X
Geological vein type X X X X X
Longwall or PR method X X X X X X
Number egress places X X
Ventilation type X X
New/old mine X X
# Acres X X X
Mine capacity X
Mined or blasted X

Cutting Machines
Cutting machine dummy X X X X
# Cutting machines X X X X
# Tons cut by machines X X
# Cutting machines, by type X
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